
GeoServer User Manual
Release 2.1-RC4

GeoServer

April 05, 2011

Contents

1 Introduction 3
1.1 Overview . 3
1.2 History . 3
1.3 Getting Involved . 4
1.4 License . 5

2 Installation 7
2.1 OS-independent binary . 7
2.2 Web archive (WAR) . 9
2.3 Windows Installer . 10
2.4 Mac OS X Installer . 10

3 Getting Started 13
3.1 Web Administration Interface Quickstart . 13
3.2 Adding a Shapefile . 23
3.3 Adding a PostGIS Table . 30
3.4 Styling a Map . 39

4 GeoServer Data Directory 41
4.1 Creating a New Data Directory . 41
4.2 Setting the Data Directory . 41
4.3 Structure of the Data Directory . 44
4.4 Migrating a Data Directory between different versions . 47

5 Web Administration Interface 49
5.1 Interface basics . 49
5.2 Server . 51
5.3 Services . 61
5.4 Data . 71
5.5 Demos . 99
5.6 Layer Preview . 103

6 Working with Data 111
6.1 Shapefile . 111

i

6.2 PostGIS . 112
6.3 Directory of spatial files . 118
6.4 External Web Feature Server . 120
6.5 External Web Map Server . 122
6.6 Java Properties . 125
6.7 ArcGrid . 127
6.8 GeoTIFF . 128
6.9 GTOPO30 . 128
6.10 ImageMosaic . 132
6.11 WorldImage . 132
6.12 ArcSDE . 135
6.13 GML . 139
6.14 DB2 . 141
6.15 H2 . 145
6.16 MySQL . 145
6.17 Pregeneralized Features . 147
6.18 Oracle . 149
6.19 Microsoft SQL Server . 151
6.20 VPF . 154
6.21 GDAL Image Formats . 156
6.22 ImagePyramid . 162
6.23 Image Mosaic JDBC . 162
6.24 Oracle Georaster . 166
6.25 Custom JDBC Access for image data . 166
6.26 Database Connection Pooling . 168
6.27 SQL views . 168
6.28 Application Schema Support . 173

7 Filtering in GeoServer 219
7.1 GeoServer supported filter languages . 219
7.2 Filter functions . 219
7.3 Filter Function Reference . 221

8 Styling 229
8.1 Introduction to SLD . 229
8.2 SLD Cookbook . 231
8.3 SLD Reference . 304
8.4 SLD Extensions in GeoServer . 328
8.5 SLD Tips and Tricks . 338

9 Services 343
9.1 Web Feature Service . 343
9.2 Web Map Service . 354
9.3 Web Coverage Service . 372
9.4 Virtual OWS Services . 376

10 RESTful Configuration 381
10.1 Overview of REST . 381
10.2 REST Configuration API Reference . 381
10.3 REST Configuration Examples . 393

11 Advanced GeoServer Configuration 403
11.1 Coordinate Reference System Handling . 403
11.2 Advanced log configuration . 407
11.3 WMS Decorations . 409

ii

12 Security 413
12.1 Accessing secured resources . 413
12.2 Users and roles . 413
12.3 Service-level security . 414
12.4 Layer-level security . 415
12.5 REST Security . 417
12.6 Disabling security . 419

13 Running in a Production Environment 421
13.1 Java Considerations . 421
13.2 Container Considerations . 423
13.3 Configuration Considerations . 424
13.4 Data Considerations . 426
13.5 Linux init scripts . 428
13.6 Other Considerations . 428
13.7 Troubleshooting . 429

14 Caching with GeoWebCache 435
14.1 Using GeoWebCache . 435
14.2 GeoWebCache Configuration . 437
14.3 GeoWebCache Demo page . 438
14.4 Seeding and refreshing . 439
14.5 Troubleshooting . 441

15 Google Earth 443
15.1 Overview . 443
15.2 Quickstart . 443
15.3 KML Styling . 448
15.4 Tutorials . 466
15.5 Features . 486

16 Extensions 501
16.1 GeoSearch . 501
16.2 Imagemap . 502
16.3 OGR based WFS Output Format . 503
16.4 Cross layer filtering . 507
16.5 GeoExt Styler . 511
16.6 WFS Versioning . 515
16.7 Web Processing Service . 516

17 Tutorials 525
17.1 Freemarker Templates . 525
17.2 GeoRSS . 527
17.3 GetFeatureInfo Templates . 531
17.4 Paletted Images . 537
17.5 Serving Static Files . 549
17.6 WMS Reflector . 549
17.7 CQL and ECQL . 552
17.8 Using the ImageMosaic plugin . 559
17.9 Building and using an image pyramid . 578
17.10 Storing a coverage in a JDBC database . 582
17.11 Using the GeoTools feature-pregeneralized module . 590
17.12 Setting up a JNDI connection pool with Tomcat . 599

18 Community 603

iii

18.1 Control flow module . 603
18.2 GeoServer CSS Module . 605
18.3 DDS/BIL(World Wind Data Formats) Extension . 627
18.4 Monitoring . 628
18.5 GeoServer Printing Module . 635
18.6 Python . 635
18.7 SpatiaLite . 639

iv

GeoServer User Manual, Release 2.1-RC4

GeoServer is an open source software server written in Java that allows users to share and edit geospa-
tial data. Designed for interoperability, it publishes data from any major spatial data source using open
standards.

This User Manual is a comprehensive guide to all aspects of using GeoServer. Whether you are a novice or
a veteran of this software, we hope that this documentation will be a helpful reference.

Contents 1

GeoServer User Manual, Release 2.1-RC4

2 Contents

CHAPTER 1

Introduction

This section is for more information on GeoServer, its background, and what it can do for you.

For those who wish to get started with GeoServer right away, feel free to skip to the Installation section.

1.1 Overview

GeoServer is an open source software server written in Java that allows users to share and edit geospa-
tial data. Designed for interoperability, it publishes data from any major spatial data source using open
standards.

Being a community-driven project, GeoServer is developed, tested, and supported by a diverse group of
individuals and organizations from around the world.

GeoServer is the reference implementation of the Open Geospatial Consortium (OGC) Web Feature Service
(WFS) and Web Coverage Service (WCS) standards, as well as a high performance certified compliant Web
Map Service (WMS). GeoServer forms a core component of the Geospatial Web.

1.2 History

GeoServer was started in 2001 by The Open Planning Project (TOPP), a non-profit technology incubator
based in New York. TOPP was creating a suite of tools to enable open democracy and to help make gov-
ernment more transparent. The first of these was GeoServer, which came out of a recognition that a suite of
tools to enable citizen involvement in government and urban planning would be greatly enhanced by the
ability to share spatial data.

The GeoServer founders envisioned a Geospatial Web, analogous to the World Wide Web. With the World
Wide Web, one can search for and download text. With the Geospatial Web, one can search for and down-
load spatial data. Data providers would be able to publish their data straight to this web, and users could
directly access it, as opposed to the now indirect and cumbersome methods of sharing data that exist today.

Those involved with GeoServer founded the GeoTools project, an open source GIS Java toolkit. Through
GeoTools, support for Shapefiles, Oracle databases, ArcSDE integration, and much more was added.

Around the same time as GeoServer was founded, The OpenGIS Consortium (now the Open Geospatial
Consortium) was working on the Web Feature Service standard. It specifies a protocol to make spatial data
directly available on the web, using GML (Geographic Markup Language), an interoperable data format. A

3

http://www.opengeospatial.org
http://www.opengeospatial.org/standards/wfs
http://www.opengeospatial.org/standards/wcs
http://www.opengeospatial.org/standards/wms
http://www.opengeospatial.org/standards/wms
http://theopenplanningproject.org/
http://geotools.org
http://www.opengeospatial.org
http://www.opengeospatial.org

GeoServer User Manual, Release 2.1-RC4

Web Map Service was also created, a protocol for creating and displaying map images created from spatial
data.

Other projects became interrelated. Refractions Research created PostGIS, a free and open spatial database,
which enabled GeoServer to connect to a free database. Also, MetaCarta created OpenLayers, an open
source browser-based map viewing utility. Together, these tools are all have enhanced the functionality of
GeoServer.

GeoServer can now output data to many other spatial data viewers, such as Google Earth, a popular 3-D
virtual globe. In addition, GeoServer is currently working directly with Google in order to allow GeoServer
data to be searchable on Google Maps. Soon a search for spatial data will be as easy as a Google search for
a web page. Thus GeoServer is continuing on its mission to make spatial data more accessible to all.

1.3 Getting Involved

There are many ways that one can help out with the GeoServer project. GeoServer fully embraces an open
source development model that does not see a split between user and developer, producer and consumer,
but instead sees everyone as a valuable resource in a collaborative quest to build something better than any
of us could alone.

1.3.1 Development

Helping to develop GeoServer is the obvious way to help out. Developers usually start with bug fixes and
small patches, and then move into larger contributions as they learn the system. Our developers are more
than happy to help out as you learn and get acquainted, and we try our hardest to keep our code clean and
well documented.

1.3.2 Documentation

One of the best and most needed ways to help out is with documentation. Our official documentation is
contained as part of our official code repository in order to maintain a uniform look and feel. However, we
also maintain a wiki <http://geoserver.org>, where any and all users can post their own documentation, tips
and tricks, and any other information that is useful to GeoServer. Like code contributions, if the GeoServer
Project Steering Committee deems that user-contributed documentation is a valuable addition to the official
documentation base, it will be added.

1.3.3 Mailing lists

GeoServer maintains two email lists: GeoServer Users and GeoServer Developers. These lists are publicly
available and are a great resource for those who are new to GeoServer, who need a question answered, or
who are interested in contributing code. The Users list is mainly for those who have questions relating to
the use of GeoServer, and the Developers list is for more code-specific and roadmap-based discussions. If
you see a question asked on these lists that you know the answer to, please respond!

1.3.4 IRC

GeoServer has an IRC channel, #geoserver, on the Freenode network. GeoServer developers frequent this
channel, and so it is a great way to give and receive information in real time.

4 Chapter 1. Introduction

http://www.refractions.net
http://metacarta.com
http://openlayers.org
http://lists.sourceforge.net/lists/listinfo/geoserver-users
http://lists.sourceforge.net/lists/listinfo/geoserver-devel
http://freenode.net

GeoServer User Manual, Release 2.1-RC4

1.3.5 Bug tracking

If you have a problem when working with GeoServer, then please let us know through the mailing lists.
GeoServer uses JIRA , a bug tracking website, to manage code. As GeoServer is open source, everyone is
encouraged to fix bugs and submit patches. Even if you are not a core developer, you can still submit a
patch through JIRA, and a developer will assess the patch and apply it to the code.

1.3.6 Translation

We would like GeoServer available in as many languages as possible, just as we want spatial data to be
available to all. The two areas of GeoServer to translate are the text for the Web Administration Interface
and this documentation. Eventually we would even like to set up GeoServer community sites in different
languages. If you are interested in this please let us know.

1.3.7 Suggest improvements

If you have suggestions as to how we can make GeoServer better, we would love to hear them. You can
contact us through the mailing lists or in IRC.

1.3.8 Spread the word

A further way to help out the GeoServer project is to spread the word about it. Word of mouth information
sharing is more powerful than any amount spent on marketing, adn the more people who use our software,
the better it will become.

1.3.9 Fund improvements

A final way to help out is to push for GeoServer to be used in your own organization. A number of com-
merical organizations offer support for GeoServer, and any improvements made due to that funding will
benefit the entire project.

1.4 License

GeoServer is free software and is licensed under the GNU General Public License.

1.4. License 5

http://jira.codehaus.org/browse/GEOS
http://www.gnu.org/licenses/gpl-2.0.txt

GeoServer User Manual, Release 2.1-RC4

6 Chapter 1. Introduction

CHAPTER 2

Installation

There are many ways to install GeoServer on your system. This section will discuss the various installation
paths available.

2.1 OS-independent binary

The most common way to install GeoServer is using the OS-independent binary. This version is a GeoServer
web application (webapp) bundled inside Jetty, a lightweight servlet container system. It has the advan-
tages of working very similarly across all operating systems plus being very simple to set up.

2.1.1 Windows

Note: This section is for the OS-independent binary. Please see the section on the Windows Installer for the
wizard-based installer for Windows.

Installation

1. Navigate to the GeoServer Download page and pick the appropriate version to download.

2. Select OS-independent binary on the download page.

3. Download the archive, and unpack to the directory where you would like the program to be located.
A typical place would be C:\Program Files\GeoServer.

Setting environment variables

You will need to set the JAVA_HOME environment variable if it is not already set. This is the path to your
JDK/JRE such that %JAVA_HOME%\bin\java.exe exists.

1. Navigate to Control Panel→ System→ Advanced→ Environment Variables.

2. Under System variables click New.

3. For Variable name enter JAVA_HOME. For Variable value enter the path to your JDK/JRE.

4. Click OK three times.

7

http://www.mortbay.org/jetty/
http://geoserver.org/display/GEOS/Download

GeoServer User Manual, Release 2.1-RC4

Note: You may also want to set the GEOSERVER_HOME variable, which is the directory where GeoServer
is installed, and the GEOSERVER_DATA_DIR variable, which is the location of the GeoServer data directory
(usually %GEOSERVER_HOME\data_dir). The latter is mandatory if you wish to use a data directory other
than the one built in to GeoServer. The procedure for setting these variables is identical to the above.

Running

Note: This can be done either via Windows Explorer or the command line.

1. Navigate to the bin directory inside the location where GeoServer is installed.

2. Run startup.bat. A command-line window will appear and persist. This window contains diag-
nostic and troubleshooting information. This window should not be closed, or else GeoServer will
shut down.

3. To access the Web Administration Interface, navigate to http://localhost:8080/geoserver.

Stopping

Either close the persistent command-line window, or run the shutdown.bat file inside the bin directory.

Uninstallation

1. Stop GeoServer (if it is running)

2. Delete the directory where GeoServer is installed.

2.1.2 Linux

2.1.3 OS X

Note: This section is for the OS-independent binary. Please see the section on the Mac OS X Installer for the
wizard-based installer for OS X.

Installation

1. Navigate to the GeoServer Download page and click your preferred GeoServer version–Stable, Latest
or Nightly.

2. On the resulting page, download and save the Binary (OS independent) format of your preferred
GeoServer version.

Note: Download GeoServer wherever you find appropriate. In this example we download
the GeoServer archive to the Desktop. If GeoServer is in a different location, simply replace
Desktop in the following command to your own folder path.

3. After saving the Geoserver archive, move to the location of your download, by first opening a terminal
window (Applications→Utitlies→Terminal) and then typing the following command:

cd Desktop/

4. Confirm that you are in the right directory by listing its contents. You should see your specific
GeoServer archive (e.g., GeoServer-2.0-RC1-bin.zip) by typing:

8 Chapter 2. Installation

http://geoserver.org/display/GEOS/Stable

GeoServer User Manual, Release 2.1-RC4

ls -l

5. Unzip geoserver-2.0-RC1.zip to /usr/local/geoserver with the following two commands:

unzip $geoserver-2.0-RC1.zip .
sudo mv geoserver-2.0-RC1/ geoserver

Note: Notice the . in the first command. This means the archive will unzip in the current
directory.

6. Add an environment variable to save the location of GeoServer by typing the following command:

echo "export GEOSERVER_HOME=/usr/local/geoserver" >> ~/.profile
. ~/.profile

7. Make yourself the owner of the geoserver folder. Type the following command in the terminal
window, replacing USER_NAME with your own username :

sudo chown -R USER_NAME /usr/local/geoserver/

8. Start GeoServer by changing into the directory geoserver/bin and executing the startup.sh
script:

cd geoserver-1.7.0/bin
sh startup.sh

9. Visit http://localhost:8080/geoserver in a web browser.

2.2 Web archive (WAR)

GeoServer is packaged as a standalone servlet for use with existing servlet container applications such as
Apache Tomcat and Glassfish.

Note: GeoServer has been mostly tested using Tomcat, and therefore these instructions may not work with
other container applications.

2.2.1 Installation

1. Navigate to the GeoServer Download page and pick the appropriate version to download.

2. Select Web archive on the download page.

3. Download and unpack the archive. Copy the file geoserver.war to the directory that contains your
container application’s webapps.

4. Your container application should unpack the web archive and automatically set up and run
GeoServer.

Note: A restart of your container application may be necessary.

2.2. Web archive (WAR) 9

http://tomcat.apache.org/
https://glassfish.dev.java.net/
http://geoserver.org/display/GEOS/Download

GeoServer User Manual, Release 2.1-RC4

2.2.2 Running

Use your container application’s method of starting and stopping webapps to run GeoServer.

1. To access the Web Administration Interface, open a browser and navigate to
http://container_application_URL/geoserver. For example, with Tomcat running
on port 8080 on localhost, the URL would be http://localhost:8080/geoserver.

2.2.3 Uninstallation

1. Stop the container application.

2. Remove the GeoServer webapp from the container application’s webapps directory.

2.3 Windows Installer

2.4 Mac OS X Installer

1. Navigate to the GeoServer Download page and click your preferred GeoServer version–Stable, Latest
or Nightly.

2. On the resulting page, download the Mac OS X Installer format of your preferred GeoServer version.

3. Double click on the .dmg file to start the download.

4. Drag the GeoServer icon to the Applications folder.

5. Navigate to your applications folder, and double click on the GeoServer icon.

Note: Accept any security warnings regarding GeoServer as an application downloaded
from the Internet.

6. In the resulting GeoServer console window, start GeoServer by going to Server→Start.

7. The console window will log GeoServer’s loading. Once GeoServer is completely started, a browser
window will open at the URL http://localhost:8080/geoserver. Welcome to GeoServer!

10 Chapter 2. Installation

http://geoserver.org/display/GEOS/Stable

GeoServer User Manual, Release 2.1-RC4

Figure 2.1: Starting the Mac OSX Installer of GeoServer

2.4. Mac OS X Installer 11

GeoServer User Manual, Release 2.1-RC4

Figure 2.2: Starting GeoServer

12 Chapter 2. Installation

CHAPTER 3

Getting Started

This section of the user guide contains an quick overview of GeoServer to get new users performing com-
mon tasks quickly and easily.

3.1 Web Administration Interface Quickstart

The Web Administration Tool is a web based used to configure all aspects of GeoServer, from
adding data to tweaking service settings. The web admin tool is accessed via web browser at
http://<host>:<port>/geoserver. http://localhost:8080/geoserver/web in a default installation
running on the local host.

Figure 3.1: Welcome Page

3.1.1 Logging In

In order to change any server settings or configure data a user must first be authenticated. Navigate
to the upper right hand corner to log into GeoServer. The default username and password is admin
and geoserver. These can be changed only by editing the security/users.properties file in the
GeoServer Data Directory.

13

http://localhost:8080/geoserver/web

GeoServer User Manual, Release 2.1-RC4

Figure 3.2: Login

3.1.2 Server

The :guilabel: Server section of the web admin provides access to GeoServer environment information. It
is a combination of diagnostic and configuration tools, and can be particularly useful for debugging. The
Server Status page offers a summary of server configuration parameters and run-time status

The Contact Information section sets the public contact information in the Capabilities document of the
WMS server.

The Global Settings page configures messaging, logging, character and proxy settings for the entire server.

The JAI Settings page is used to configure several JAI parameters, used by both WMS and WCS operations.

The About GeoServer section provides links to the GeoServer documentation, homepage and bug tracker.

3.1.3 Services

The Services section is for advanced users needing to configure the request protocols used by GeoServer.
The Web Coverage Service (WCS) page manages metadata information, common to WCS, WFS and WMS
requests. The Web Feature Service (WFS) page permits configuration of features, service levels, and GML
output. The Web Map Service (WMS) page sets raster and SVG options.

3.1.4 Data

The Data links directly to a data type page with edit, add, and delete functionality. All data types sub-
sections follow a similar workflow. As seen in the Styles example below, the first page of each data type
displays a view page with an indexed table of data.

Each data type name links to a corresponding configuration page. For example, all items listed below
Workspace, Store and Layer Name on the Layers view page, link to its respective configuration page.

In the data type view panel, there are three different ways to locate a data type–sorting, searching, and
scrolling .

To alphabetically sort a data type, click on the column header.

For simple searching, enter the search criteria in the search box and hit Enter.

To scroll through data type pages, use the arrow button located on the bottom and top of the view table.

As seen in the Stores example below, the buttons for adding and removing a data type can be found at the
top of the view page.

To add a new data, select the Add button, and follow the data type specific prompts. To delete a data type
In order to remove a data type, click on the data type’s corresponding check box and select the Remove
button. (Multiple data types, of the same kind, can be checked for batch removal.)

14 Chapter 3. Getting Started

GeoServer User Manual, Release 2.1-RC4

Figure 3.3: Status Page

3.1. Web Administration Interface Quickstart 15

GeoServer User Manual, Release 2.1-RC4

Figure 3.4: Contact Page

16 Chapter 3. Getting Started

GeoServer User Manual, Release 2.1-RC4

Figure 3.5: Global Settings Page

3.1. Web Administration Interface Quickstart 17

GeoServer User Manual, Release 2.1-RC4

Figure 3.6: JAI Settings

18 Chapter 3. Getting Started

GeoServer User Manual, Release 2.1-RC4

Figure 3.7: About Section

Figure 3.8: Styles View page

3.1. Web Administration Interface Quickstart 19

GeoServer User Manual, Release 2.1-RC4

Figure 3.9: Layers View

Figure 3.10: On the left an unsorted column; on the right a sorted column.

20 Chapter 3. Getting Started

GeoServer User Manual, Release 2.1-RC4

Figure 3.11: Search results for the query “top”.

Figure 3.12: Page scroll for data types.

Figure 3.13: Buttons to add and remove Stores

Figure 3.14: Stores checked for deletion

3.1. Web Administration Interface Quickstart 21

GeoServer User Manual, Release 2.1-RC4

3.1.5 Demos

The Demos page contains links to example WMS, WCS and WFS requests for GeoServer as well as a link
listing all SRS info known to GeoServer. You do not need to be logged into GeoServer to access this page.

Figure 3.15: Demos page

3.1.6 Layers Preview

The Layers Preview page provides layer views in various output formats, including the common Open-
Layers and KML formats. This page helps to visually verify and explore the configuration of a particular
layer.

Figure 3.16: Layer’s Preview page

22 Chapter 3. Getting Started

GeoServer User Manual, Release 2.1-RC4

Each layer row consists of a type, name, title, and available formats for viewing. Name refers to the
Workspace and Layer Name of a layer, while Title refers to the brief description configured in the Edit
Layer Data panel. Common Formats include OpenLayers and KML output, while the All Formats include
additional output formats for further use or data sharing.

Figure 3.17: Single Layer preview row

3.2 Adding a Shapefile

This tutorial walks through the steps of publishing a Shapefile with GeoServer.

Note: This tutorial assumes that GeoServer is running on http://localhost:8090/geoserver/web.

3.2.1 Getting Started

1. Download the file nyc_roads.zip. This file contains a shapefile of roads from New York City that will
be used during in this tutorial.

2. Unzip the nyc_roads.zip. The extracted folder consists of the following four files:

nyc_roads.shp
nyc_roads.shx
nyc_roads.dbf
nyc_roads.prj

3. Move the nyc_roads folder into <GEOSERVER_DATA_DIR>/data where GEOSERVER_DATA_DIR is
the root of the GeoServer data directory. If no changes were were made to the GeoServer file structure,
the path should be geoserver/data_dir/data/nyc_roads.

3.2.2 Create a New Workspace

The first step is to create a workspace for the Shapefile. The workspace is a container used to group similar
layers together.

1. In a web browser navigate to http://localhost:8080/geoserver/web.

2. Log into GeoServer as described in the Logging In quick start.

3. Navigate to Data→Workspaces.

4. To create a new workspace click, select the Add new workspace button. You will be prompted to
enter a workspace Name and Namespace URI.

5. Enter the name nyc_roads and the URI http://opengeo.org/nyc_roads A workspace name
is a name describing your project and cannot exceed ten characters or contain a space. A Namespace
URI (Uniform Resource Identifier), is typically a URL associated with your project, with perhaps a
different trailing identifier.

3.2. Adding a Shapefile 23

http://localhost:8090/geoserver/web
http://localhost:8080/geoserver/web

GeoServer User Manual, Release 2.1-RC4

Figure 3.18: Workspaces page

Figure 3.19: Configure a New Worksapce

24 Chapter 3. Getting Started

GeoServer User Manual, Release 2.1-RC4

Figure 3.20: NYC Roads Workspace

6. Click the Submit button. GeoServer will append the nyc_roads workspace to the bottom of the
Workspace View list.

3.2.3 Create a Store

1. Navigate to Data→Stores.

2. In order to add the nyc_roads data, we need to create a new Store. Click on the Add new store button.
You will be redirected to a list of data types GeoServer supports.

3. Because nyc_roads is a shapefile, select Shapefile: ESRI(tm) Shapefiles (.shp).

4. On the New Vector Data Source page begin by configuring the Basic Store Info. Select the workspace
nyc_roads from the drop down menu, type NYC Roads for the name and enter a brief description,
such as Roads in New York City.

5. Under the Connections Parameters specify the location of the shapefile–
file:data/nyc_roads/nyc_roads.shp.

6. Press Save. You will be redirected to New Layer chooser page in order to configure nyc_roads layer.

3.2.4 Layer Configuration

1. On the New Layer chooser page, select the Layer name nyc_roads.

3.2. Adding a Shapefile 25

GeoServer User Manual, Release 2.1-RC4

Figure 3.21: Data Sources

2. The following configuration define the data and publishing parameters for a layer. Enter a short Title
and Abstract for the nyc_roads shapefile.

3. Generate the shapefile’s bounds by clicking the Compute from data and then Compute from Native
bounds.

4. Set the shapefile’s style by first moving over to the Publishing tab.

5. The select line from the Default Style drop down list.

6. Finalize your data and publishing configuration by scrolling to the bottom and clicking Save.

3.2.5 Preview the Layer

1. In order to verify that the nyc_roads is probably published we will preview the layer. Navigate to the
Map Preview and search for the nyc_roads:nyc_roads link.

2. Click on the OpenLayers link under the Common Formats column.

3. Success! An OpenLayers map should load with the default line style.

26 Chapter 3. Getting Started

GeoServer User Manual, Release 2.1-RC4

Figure 3.22: Data Info and Parameters for nyc_roads

Figure 3.23: New Layer Chooser

3.2. Adding a Shapefile 27

GeoServer User Manual, Release 2.1-RC4

Figure 3.24: Basic Resource Information for Shapefile

Figure 3.25: Generate Bounding Box

28 Chapter 3. Getting Started

GeoServer User Manual, Release 2.1-RC4

Figure 3.26: Select Default Style

3.2. Adding a Shapefile 29

GeoServer User Manual, Release 2.1-RC4

Figure 3.27: Layer Preview

3.3 Adding a PostGIS Table

This tutorial walks through the steps of publishing a PostGIS table with GeoServer.

Note: This tutorial assumes that GeoServer is running on http://localhost:8080/geoserver.

Note: This tutorial assumes PostGIS has been previously installed on the system.

3.3.1 Getting started

1. Download the zip file nyc_buildings.zip. It contains a PostGIS dump of a subset of buildings from
New York City that will be used during in this tutorial.

2. Create a PostGIS database called “nyc”. This can be done with the following command line:

createdb -T template_postgis nyc

If the PostGIS install is not set up with the “postgis_template” then the following sequence of com-
mands will perform the equivalent:

...

3. Unzip nyc_buildings.zip to some location on the file system. This will result in the file
nyc_buildings.sql.

4. Import nyc_buildings.sql into the nyc database:

psql -f nyc_buildings.sql nyc

3.3.2 Create a new data store

The first step is to create a data store for the PostGIS database “nyc”. The data store tells GeoServer how to
connect to the database.

1. In a web browser navigate to http://localhost:8080/geoserver.

2. Navigate to Data→Stores.

30 Chapter 3. Getting Started

http://localhost:8080/geoserver
http://localhost:8080/geoserver

GeoServer User Manual, Release 2.1-RC4

Figure 3.28: OpenLayers map of nyc_roads

3.3. Adding a PostGIS Table 31

GeoServer User Manual, Release 2.1-RC4

Figure 3.29: Adding a New Data Source

3. Create a new data store by clicking the PostGIS NG link.

4. Keeping the default Workspace enter Basic Store Info of Name and Description.

Figure 3.30: Basic Store Info

5. Specify the PostGIS database Connection Parameters

32 Chapter 3. Getting Started

GeoServer User Manual, Release 2.1-RC4

dbtype postgisng
host localhost
post 5432
database nyc
schema public
user postgres
passwd enter postgres password
validate connections enable with check box

Note: The username and password parameters specific to the user who created the postgis database.
Depending on how PostgreSQL is configured the password parameter may be unnecessary.

6. Click the Save button.

3.3.3 Layer Configuration

1. Navigate to Data→Layers.

2. Select Add a new resource button.

3. From the New Layer chooser drop down menu, select cite:nyc_buidings.

4. On the resulting layer row, select the Layer name nyc_buildings.

5. The following configurations define the data and publishing parameters for a layer. Enter the Basic
Resource Info for nyc_buildings.

6. Generate the database bounds by clicking the Compute from data and then Compute from Native
bounds.

7. Set the layer’s style by first moving over to the Publishing tab.

8. The select polygon from the Default Style drop down list.

9. Finalize your data and publishing configuration by scrolling to the bottom and clicking Save.

3.3.4 Preview the Layer

1. In order to verify that the nyc_building is probably published we will preview the layer. Navigate to
the Map Preview and search for the cite:nyc_buildings link.

2. Click on the OpenLayers link under the Common Formats column.

3. Success! An OpenLayers map should load with the default polygon style.

3.3. Adding a PostGIS Table 33

GeoServer User Manual, Release 2.1-RC4

Figure 3.31: Connection Parameters

34 Chapter 3. Getting Started

GeoServer User Manual, Release 2.1-RC4

Figure 3.32: New Layer drop down selection

Figure 3.33: New Layer row

3.3. Adding a PostGIS Table 35

GeoServer User Manual, Release 2.1-RC4

Figure 3.34: Basic Resource Info

Figure 3.35: Generate Bounding Box

36 Chapter 3. Getting Started

GeoServer User Manual, Release 2.1-RC4

Figure 3.36: Select Default Style

Figure 3.37: Layer Preview

3.3. Adding a PostGIS Table 37

GeoServer User Manual, Release 2.1-RC4

Figure 3.38: OpenLayers map of nyc_buildings

38 Chapter 3. Getting Started

GeoServer User Manual, Release 2.1-RC4

3.4 Styling a Map

When a new dataset is added to GeoServer the layer for it is usually assigned a very basic style. To properly
visualize the data a style specific to that data must be created.

This tutorial walks through the steps to create a new style in GeoServer and provides an introduction to the
Styled Layer Descriptor (SLD) styling language.

Note: It is assumed that the tutorials Adding a Shapefile and Adding a PostGIS Table have been completed.

3.4.1 Getting started

Before continuing with this tutorial it is strongly recommended that the section Introduction to SLD be first
read.

3.4.2 Creating a new style

3.4. Styling a Map 39

GeoServer User Manual, Release 2.1-RC4

40 Chapter 3. Getting Started

CHAPTER 4

GeoServer Data Directory

The GeoServer data directory is the location on the file system where GeoServer stores all of its configuration.
This configuration defines such things as: What data is served by GeoServer? Where is that data is located?
How should services such as WFS and WMS interact with and server that data? And more. The data
directory also contains a number of support files used by GeoServer for various purposes.

In general users does not need to know about the structure of the data directory. But it is a good idea to
define an external data directory when going to production, to make it easier to upgrade.

Or to learn how to create a directory for a GeoServer installation jump to the Creating a New Data Directory
section. Creating a New Data Directory contains details on how to make a GeoServer use an existing data
directory. To learn more about the structure of the GeoServer data directory continue onto the Structure of
the Data Directory section.

4.1 Creating a New Data Directory

The easiest way to create a new data directory is to copy one that comes with a standard GeoServer instal-
lation.

If GeoServer is running in Standalone mode the data directory is located at <installation
root>/data_dir.

Note: On Windows systems the <installation root> is located at C:\Program Files\GeoServer
1.7.0.

If GeoServer is running in Web Archive mode inside of a servlet container, the data directory is located at
<web application root>/data.

Once the data directory has been found copy it to a new external location. To point a GeoServer instance at
the new data directory proceed to the next section Setting the Data Directory.

4.2 Setting the Data Directory

Setting up a GeoServer data directory is dependent on the type of GeoServer installation. Follow the in-
structions below specific to the target platform.

41

GeoServer User Manual, Release 2.1-RC4

4.2.1 Windows

On Windows platforms the location of the GeoServer data directory is controlled by the
GEOSERVER_DATA_DIR environment variable.

Note: When the GEOSERVER_DATA_DIR environment variable is not set, the directory data_dir under
the root of the GeoServer installation is used.

To set the GEOSERVER_DATA_DIR:

On Windows XP systems:

1. From the Desktop or Start Menu right-click the My Computer icon and select Properties.

2. On the resulting dialog select the Advanced tab and click the Environment Variables button.

3. Click the New button and create a environment variable called GEOSERVER_DATA_DIR and set it to
the desired location.

On Windows Vista systems:

4.2.2 Linux

On Linux platforms the location of the GeoServer data directory is controlled by the
GEOSERVER_DATA_DIR environment variable. Setting the variable can be achieved with the follow-
ing command (in a bash shell):

42 Chapter 4. GeoServer Data Directory

GeoServer User Manual, Release 2.1-RC4

% export GEOSERVER_DATA_DIR=/var/lib/geoserver_data

Place the command in the .bash_profile or .bashrc file (again assuming a bash shell). Ensure that this
done for the user GeoServer will be run by.

4.2.3 Mac OS X

If running the binary version of GeoServer on Mac OS X then the data directory is set in the exact same way
as linux.

If using the Mac OS X binary, then set the GEOSERVER_DATA_DIR environment variable to the file loca-
tion. See this page for details on how to set an environment variable in Mac OS X

4.2.4 Web Archive

When running GeoServer inside of a servlet container the data directory can be specified in a number of
ways. The recommended method is to set a servlet context parameter. An alternative is to set a Java System
Property.

Servlet context parameter

Servlet context parameter’s are specified in the WEB-INF/web.xml file for the GeoServer application:

<web-app>
...
<context-param>
<param-name>GEOSERVER_DATA_DIR</param-name>
<param-value>/var/lib/geoserver_data</param-value>

</context-param>
...

</web-app>

Java system property

Depending on the servlet container used it is also possible to specify the data directory location with a
Java System Property. This method can be useful during upgrades, as it prevents the need to set the data
directory on every single upgrade.

Warning: Using a system property will typically set the property for all applications running in the
servlet container, not just GeoServer.

Setting the Java System Property is dependent on the servlet container.

In Tomcat:

Edit the file bin/setclasspath.sh under the root of the Tomcat installation. Specify the
GEOSERVER_DATA_DIR system property by setting the CATALINA_OPTS variable:

CATALINA_OPTS="-DGEOSERVER_DATA_DIR=/var/lib/geoserver_data"

4.2. Setting the Data Directory 43

http://developer.apple.com/mac/library/qa/qa2001/qa1067.html

GeoServer User Manual, Release 2.1-RC4

In Glassfish:

Edit the file domains/<<domain>>/config/domain.xml under the root of the Glassfish installation,
where <<domain>> refers to the domain that the GeoServer web application is deployed under. Add a
<jvm-options> inside of the <java-config> element:

...
<java-config>

...
<jvm-options>-DGEOSERVER_DATA_DIR=/var/lib/geoserver_data</jvm-options>

</java-config>
...

4.3 Structure of the Data Directory

4.3.1 Introduction

The structure of the data directory at this point is likely only of interest to core developers. Previously users
would often modify their data directory directly to programmatically make changes to their GeoServer
configuration. The new route to do this is with the RESTful Configuration API, and is the only recommended
option.

The following figure shows the structure of a GeoServer data directory:

data_directory/
global.xml
logging.xml
wms.xml
wfs.xml
wcs.xml
data/
demo/
geosearch/
gwc/
layergroups/
palettes/
plugIns/
security/
styles/
templates/
user_projections/
workspaces
www/

4.3.2 The .xml files

The top level xml files save the information about the services and various global options.

44 Chapter 4. GeoServer Data Directory

GeoServer User Manual, Release 2.1-RC4

File Description
global.xml Contains settings that go across services, including contact information, JAI settings,

character sets and verbosity.
logging.xmlSpecifies the logging level, location, and whether it should log to std out.
wcs.xml Contains the service metadata and various settings for the WCS service.
wfs.xml Contains the service metadata and various settings for the WFS service.
wms.xml Contains the service metadata and various settings for the WMS service.

4.3.3 workspaces

The various workspaces directories contain metadata about “layers” which are published by
GeoServer. Each layer will have a layer.xml file associated with it, as well as either a cover-
age.xml or a featuretype.xml file depending on whether it’s a raster or vector .

4.3.4 data

Not to the confused with the “GeoServer data directory” itself, the data directory is a location where actual
data can be stored. This directory is commonly used to store shapefiles and raster files but can be used for
any data that is file based.

The main benefit of storing data files inside of the data directory is portability. Consider a shapefile
located external to the data directory at a location C:\gis_data\foo.shp. The datastore entry in
catalog.xml for this shapefile would like the following:

<datastore id="foo_shapefile">
<connectionParams>

<parameter name="url" value="file://C:/gis_data/foo.shp" />
</connectionParams>

</datastore>

Now consider trying to port this data directory to another host running GeoServer. The problem exists in
that the location C:\gis_data\foo.shp probably does not exist on the second host. So either the file
must be copied to the new host, or catalog.xml must be changed to reflect a new location.

Such steps can be avoided by storing foo.shp inside of the data directory. In such a case the datastore
entry in catalog.xml becomes:

<datastore id="foo_shapefile">
<connectionParams>
<parameter name="url" value="file:data/foo.shp"/>

</connectionParams>
</datastore>

The value attribute is re-written to be relative. In this way the entire data directory can be archived, copied
to the new host, un-archived, and used directly with no additional changes.

4.3.5 demo

The demo directory contains files which define the sample requests available in the Sample Request Tool
(http://localhost:8080/geoserver/demoRequest.do). For more information see the Demos page for more
information.

4.3. Structure of the Data Directory 45

http://localhost:8080/geoserver/demoRequest.do

GeoServer User Manual, Release 2.1-RC4

4.3.6 geosearch

The geosearch directory is not named quite correctly. It contains information for regionation of KML files.

4.3.7 gwc

This directory holds the cache created by the embedded GeoWebCache service.

4.3.8 layergroups

Contains information on the layer groups configurations.

4.3.9 palettes

The palettes directory is used to store pre-computed Image Palettes. Image palettes are used by the
GeoServer WMS as way to reduce the size of produced images while maintaining image quality.

4.3.10 security

The security directory contains all the files used to configure the GeoServer security subsystem. This
includes a set of property files which define access roles, along with the services and data each role is autho-
rized to access. See the Security section for more information.

4.3.11 styles

The styles directory contains a number of Styled Layer Descriptor (SLD) files which contain styling in-
formation used by the GeoServer WMS. For each file in this directory there is a corresponding entry in
catalog.xml:

<style id="point_style" file="default_point.sld"/>

See the Styling for more information about styling and SLD .

4.3.12 templates

The template directory contains files used by the GeoServer templating subsystem. Templates are used to
customize the output of various GeoServer operations.

4.3.13 user_projections

The user_projections directory contains a single file called epsg.propertieswhich is used to define
custom spatial reference systems which are not part of the official EPSG database.

4.3.14 www

The www directory is used to allow GeoServer to act like a regular web server and serve regular files. While
not a replacement for a full blown web server the www directory can be useful for serving OpenLayers map
applications.

46 Chapter 4. GeoServer Data Directory

http://www.epsg.org/CurrentDB.html
http://openlayers.org

GeoServer User Manual, Release 2.1-RC4

4.4 Migrating a Data Directory between different versions

4.4.1 Minor and major version numbers

There should generally be no problems or issues migrating data directories between major and minor ver-
sions of GeoServer (i.e. from 2.0.0 to 2.0.1 and vice versa, or from 1.6.x to 1.7.x and vice versa).

4.4.2 Migrating between GeoServer 1.7.x and 2.0.x

When using GeoServer 2.0.x with a data directory from the 1.7.x branch, modifications will occur to the
directory immediately that will make the data directory incompatible with 1.7.x! Below is a list of changes
made to the data directory.

Files and directories added

wfs.xml
wcs.xml
wms.xml
logging.xml
global.xml
workspaces/*
layergroups/*
styles/*.xml

Files renamed

• catalog.xml renamed to catalog.xml.old

• services.xml renamed to services.xml.old

4.4.3 Reverting from GeoServer 2.0.x to 1.7.x

In order to revert the directory to be compatible with 1.7.x again:

1. Stop GeoServer.

2. Delete the following files and directories:

wfs.xml
wcs.xml
wms.xml
logging.xml
global.xml
workspaces/*
layergroups/*
styles/*.xml

3. Rename catalog.xml.old to catalog.xml.

4. Rename services.xml.old to services.xml.

4.4. Migrating a Data Directory between different versions 47

GeoServer User Manual, Release 2.1-RC4

48 Chapter 4. GeoServer Data Directory

CHAPTER 5

Web Administration Interface

The Web Administration Interface is a web-based tool for configuring all aspects of GeoServer,
from adding data to tweaking service settings. This is accessed via a web browser at
http://localhost:8080/geoserver/web in a default GeoServer installation, although this URL may vary de-
pending on how GeoServer is installed.

5.1 Interface basics

This section will introduce the basic concepts of the web administration interface (often abbreviated to “web
admin” in the text.)

5.1.1 Welcome Page

When using most common installations, GeoServer will start a web server on localhost at port 8080 acces-
sible by the following URL:

http://localhost:8080/geoserver/web

Note: This URL is dependent on your installation of GeoServer. When using the WAR installation, for
example, the URL will be dependent on your container setup.

When correctly configured, a welcome page will show up in your browser.

The welcome page contains links to various areas of the GeoServer configuration. The About GeoServer
section in the Server menu provides external links to the GeoServer documentation, homepage and
bug tracker. The page also provides login access to the geoserver console. This security mea-
sure prevents unauthorized persons from making changes to your GeoServer configuration. The de-
fault username and password is admin and geoserver. These can be changed only by editing the
security/users.properties file in the GeoServer Data Directory.

Regardless of authorization access, the web admin menu links to the Demo and Layer Preview portion of
the console. The Demos page contains helpful links to various information pages, while the Layer Preview
page provides spatial data in various output formats.

When logged in, additional options will be presented.

49

http://localhost:8080/geoserver/web

GeoServer User Manual, Release 2.1-RC4

Figure 5.1: Welcome Page

Figure 5.2: Login

Figure 5.3: Additional options when logged in

50 Chapter 5. Web Administration Interface

GeoServer User Manual, Release 2.1-RC4

Geoserver Web Coverage Service (WCS), Web Feature Service (WFS), and Web Map Service (WMS) config-
urations specifications can be accessed from this welcome page as well. See the section on Services for more
information.

5.2 Server

The Server section of the Web Administration Interface provides access to GeoServer environment informa-
tion. It is a combination of diagnostic and configuration tools, and can be particularly useful for debugging.

5.2.1 Status

The Server Status page offers a summary of server configuration parameters and run-time status. It is
intended to assist diagnostics within a testing environment.

Status Field Descriptions

The following describes current status indicators

5.2. Server 51

GeoServer User Manual, Release 2.1-RC4

Figure 5.4: Status Page

52 Chapter 5. Web Administration Interface

GeoServer User Manual, Release 2.1-RC4

Option Description
Locks A WFS has the ability to lock features to prevent more than one person from

updating the feature at one time. If data is locked, edits can be performed by a single
WFS editor. When the edits are posted, the locks are released and features can be
edited by other WFS editors. A zero in the locks field means all locks are released. If
locks is non-zero, then pressing “free locks,” releases all feature locks currently help
by the server, and updates the field value to zero.

Connections Refers to the numbers of vector stores, in the above case 4, that were able to connect.
Memory Usage The amount of memory current used by GeoServer. In the above example, 55.32 MB

of memory is being used. Clicking on the “Free Memory” button, cleans up memory
marked for deletion by running the garbage collector.

JVM Version Denotes which version of the JVM (Java Virtual Machine) is been used to power the
server. Here the JVM is Apple Inc.: 1.5.0_16.

Native JAI GeoServer uses Java Advanced Imaging (JAI) framework for image rendering and
coverage manipulation. When properly installed (true), JAI makes WCS and WMS
performance faster and more efficient.

Native JAI
ImageIO

GeoServer uses JAI Image IO (JAI) framework for raster data loading and image
encoding. When properly installed (true), JAI Image I/O makes WCS and WMS
performance faster and more efficient.

JAI Maximum
Memory

Expresses in bytes the amount of memory available for tile cache, in this case
33325056 bytes. The JAI Maximum Memory value must be between 0.0 and {0}

JAI Memory
Usage

Run-time amount of memory is used for the tile cache. Clicking on the “Free
Memory” button, clears available JAI memory by running the tile cache flushing.

JAI Memory
Threshold

Refers to the percentage, e.g. 75, of cache memory to retain during tile removal. JAI
Memory Threshold value must be between 0.0 and 100.

Number of JAI
Tile Threads

The number of parallel threads used by to scheduler to handle tiles.

JAI Tile Thread
Priority

Schedules the global tile scheduler priority. The priority value is defaults to 5, and
must fall between 1 and 10.

Update
Sequence

Refers to the number of times (60) the server configuration has been modified.

Resource cache GeoServer does not cache data, but it does cache connection to stores, feature type
definitions, external graphics, font definitions and CRS definitions as well. The
“Clear” button forces those caches empty and makes GeoServer reopen the stores
and re-read image and font information, as well as the custom CRS definitions stored
in ${GEOSERVER_DATA_DIR}/user_projections/epsg.properties.

Configuration
and catalog

GeoServer keeps in memory all of its configuration data. If for any reason that
configuration information has become stale (e.g., an external utility has modified the
configuration on disk) the “Reload” button will force GeoServer to reload all of its
configuration from disk.

Timestamps Field Descriptions

Option Description
GeoServer Currently a placeholder. Refers to the day and time of current GeoServer install.
Configuration Currently a placeholder. Refers to the day and time of last configuration change.
XML Currently a placeholder.

5.2.2 Contact Information

The Contact Information is used in the Capabilities document of the WMS server, and is publically accessi-
ble. We recommend filling out this form with appropriate information, in order for people to contact you.

5.2. Server 53

https://jai.dev.java.net
https://jai-imageio.dev.java.net

GeoServer User Manual, Release 2.1-RC4

Figure 5.5: Contact Page

54 Chapter 5. Web Administration Interface

GeoServer User Manual, Release 2.1-RC4

Contact Information Fields

Field Description
Contact Contact information for webmaster
Organization The name of the organization with which the contact is affiliated.
Position The position of the contact within their organization.
Address Type The type of address specified, such as postal.
Address The actual street address.
City The city of the address.
State The state or province of the address.
Zip code The postal code for the address.
Country The country of the address.
Telephone The contact phone number.
Fax The contact Fax number.
Email The contact email address.

5.2.3 Global Settings

The Global Setting page configures messaging, logging, character and proxy settings for the entire server.

Global Setting Fields

Verbose Messages: When enabled, Verbose Messages tells GeoServer to return XML with newlines and
indents. Because such XML responses contain a larger amount of data, and in turn requires a larger amount
bandwidth we recommended this option only for testing purposes.

Verbose Exception Reporting: Instead of the one line error message, enabled Verbose Exception Reporting
returns service exceptions with full Java stack traces. Verbose exception reporting writes to the GeoServer
log file and offers one of the most useful configuration options for debugging.

Number of Decimals: Refers to the number of decimal places returned in a GetFeature response. Also
useful in optimizing bandwidth.

Character Set:* Specifies the global character encoding that will be used in XML responses. We recommend
the default UTF-8 for most users but support all character sets listed on the IANACharset Registry, and
have an available Java implementation.

Proxy Base URL: GeoServer can have the capabilities documents properly report a proxy. The Proxy Base
URL field is the base URL seen beyond a reverse proxy.

Logging Profile: Corresponds to a log4j configuration file in GeoServer’s data directory. (Apache log4j is a
Java-based logging utility.) By default, there are five logging profiles set in GeoServer’s configurations file;
customized profiles can be added by editing the log4j file.

There are six logging levels used by log. They range from the least serious TRACE, through DEBUG, INFO,
WARN, ERROR and finally the most serious, FATAL. The GeoServer logging profiles combine logging
levels with specific server operations. The five pre-built logging profiles available on the global settings
page are:

1. Default Logging provides a good mix of detail without being VERBOSE. Default logging enables
INFO on all GeoTools and GeoServer levels, except certain (chatty) GeoTools packages which require
WARN.

2. Verbose Logging provides much more detail by enables DEBUG level logging on GeoTools, GeoServer,
and VFNY.

5.2. Server 55

http://www.iana.org/assignments/character-sets
http://logging.apache.org/log4j/1.2/index.html

GeoServer User Manual, Release 2.1-RC4

Figure 5.6: Global Settings Page

56 Chapter 5. Web Administration Interface

GeoServer User Manual, Release 2.1-RC4

3. Production Logging is the most minimal logging profile, with only WARN enabled on all GeoTools and
GeoServer levels. With such production level logging only problems are written to the log files.

4. GeoTools Developer Logging is a verbose logging profile that includes DEBUG information only on
GeoTools. This developer profile is recommended for active debugging of GeoTools.

5. GeoServer Developer Logging is a verbose logging profile that includes DEBUG information on
GeoServer and VFNY. This developer profile is recommended for active debugging of GeoServer.

Log to StdOut: In general, StdOut (Standard output) refers to where a program writes its output data.
In GeoServer, the Log to StdOut checkbox enables logging to the text terminal which initiated the pro-
gram, most often the console. If you are running GeoServer in a large J2EE container, you might not want
your container-wide logs filled with GeoServer information. Un-checking this option will suppress most
GeoServer logging, with only fatal exceptions still outputted to the console log.

Log Location Sets the written output location for the logs. A log location may be a directory or a file,
and can be specified as an absolute path (e.g., C:GeoServerGeoServer.log) or a relative one (e.g.,
GeoServer.log). Relative paths are relative to the GeoServer data directory.

5.2.4 GeoWebCache Settings

The GeoWebCache Settings page in the Server menu in the Web Administration Interface shows some con-
figuration options for GeoWebCache, a tile server that comes embedded by default inside GeoServer. For
more information about this embedded version, please see the section on Caching with GeoWebCache.

Enable direct WMS integration

GeoWebCache acts as a proxy between GeoServer and map client. By default, GeoWebCache has a separate
endpoint from the GeoServer WMS. (See the section on Using GeoWebCache for more details.)

Enabling direct WMS integration allows WMS requests served through GeoServer to be cached as if they
were received and processed by GeoWebCache. This yields the flexibility of a WMS with the speed of a tile
server. See the section on Using GeoWebCache for more details about this feature.

Disk quota

This section manages the disk usage for tiles saved with GeoWebCache.

By default, disk usage with GeoWebCache is unbounded, regardless of integration with the GeoServer
WMS, so every tile served from GeoWebCache will be stored in the cache directory (typically the gwc
directory inside the data directory). When direct WMS integration is enabled but disk quotas not enabled,
every tile that is served through both the GeoServer WMS and GeoWebCache will be stored in the cache
directory, which could cause disk capacity issues. Setting a disk quota allows disk usage to be constrained.

5.2. Server 57

GeoServer User Manual, Release 2.1-RC4

58 Chapter 5. Web Administration Interface

GeoServer User Manual, Release 2.1-RC4

Option Default
value

Description

Enable Disk Quota
limits

Off Turns on the disk quota. When disabled, the cache directory
will grow unbounded. When enabled, the disk quota will be set
according to the options below.

Compute cache usage
based on a disk block
size of

4096
bytes

This field should be set equal to the disk block size of the
storage medium where the cache is located.

Check if the cache disk
quota is exceeded every

10
seconds

Time interval at which the cache is polled. Smaller values (more
frequent polling) will slightly increase disk activity, but larger
values (less frequent polling) might cause the disk quota to be
temporarily exceeded.

Set maximum tile cache
size

100 MiB
(Mebibytes)

The maximum size for the cache. When this value is exceeded
and the cache is polled, tiles will be removed according to the
policy choice listed below. Note that the unit options are
mebibytes (approx. 1.05MB), gibibytes (approx. 1.07GB), and
tebibytes (approx. 1.10TB).

When forcing disk
quota limits, remove
first tiles that are

Least
Fre-
quently
Used

Sets the policy for tile removal when the disk quota is exceeded.
Options are Least Frequently Used (removes tiles based on
how often the tile was accessed) or Least Recently Used
(removes tiles based on date of last access).

Note: See the GeoWebCache documentation for more about disk quotas.

When finished making changes, click Submit.

This section also shows how much disk space is being used compared to the disk quota size, as well as the
last time (if any) the quota was reached.

Links

This page contains links to the embedded GWC homepage (containing runtime statistics and status up-
dates) and GeoWebCache Demo page where you can view all layers known to GeoWebCache and reload
configuration.

5.2.5 JAI

Java Advanced Imaging (JAI) is an image manipulation library built by Sun Microsystems and distributed
with an open source license. JAI Image I/O Tools provides reader, writer, and stream plug-ins for the
standard Java Image I/O Framework. Several JAI parameters, used by both WMS and WCS operations,
can be configured in the JAI Settings page.

Memory & Tiling

When supporting large images it is efficient to work on image subsets without loading everything to mem-
ory. A widely used approach is tiling which basically builds a tessellation of the original image so that
image data can be read in parts rather than whole. Since very often processing one tile involves surround-
ing tiles, tiling needs to be accompanied by a tile-caching mechanism. The following JAI parameters allow
you to manage the JAI cache mechanism for optimized performance.

Memory Capacity: For memory allocation for tiles, JAI provides an interface called TileCache. Memory
Capacity sets the global JAI TileCache as a percentage of the available heap. A number between 0 and 1
exclusive. If the Memory Capacity is smaller than the current capacity, the tiles in the cache are flushed to
achieve the desired settings. If you set a large amount of memory for the tile cache, interactive operations

5.2. Server 59

http://geowebcache.org/docs
http://java.sun.com/javase/technologies/desktop/media/jai/
https://jai-imageio.dev.java.net/

GeoServer User Manual, Release 2.1-RC4

Figure 5.7: JAI Settings

60 Chapter 5. Web Administration Interface

GeoServer User Manual, Release 2.1-RC4

are faster but the tile cache fills up very quickly. If you set a low amount of memory for the tile cache, the
performance degrades.

Memory Threshold: Sets the global JAI TileCache Memory threshold. Refers to the fractional amount of
cache memory to retain during tile removal. JAI Memory Threshold value must be between 0.0 and 1.0.
The Memory Threshold visible on the Status page.

Tile Threads: JAI utilizes a TileScheduler for tile calculation. Tile computation may make use of multi-
threading for improved performance. The Tile Threads parameter sets the TileScheduler, indicating the
number of threads to be used when loading tiles.

Tile Threads Priority: Sets the global JAI Tile Scheduler thread priorities. Values range from 1 (Min) to 10
(Max), with default priority set to 5 (Normal).

Tile Recycling: Enable/Disable JAI Cache Tile Recycling. If checked, Tile Recycling allows JAI to re-use
already loaded tiles, with vital capability for performances.

Image I/O Caching: Enables/disable Image I/O Caching. When checked, indicates that raw tiles read from
disk should be cached.

Native Acceleration: In order to improve the computation speed of image processing applications, the JAI
comes with both Java Code and native code for many platform. If the Java Virtual Machine (JVM) finds the
native code, then that will be used. If the native code is not available, the Java code will be used. Thus, the
JAI package is able to provide optimized implementations for different platforms that can take advantage
of each platform’s capabilities.

JPEG Native Acceleration: Enables/disable JAI JPEG Native Acceleration. When checked, enables JPEG
native code, which may speed performance, but compromise security and crash protection.

PNG Native Acceleration: Enables/disables JAI PNG Native Acceleration. When checked, enables PNG
native code, which may speed performance, but compromise security and crash protection.

Mosaic Native Acceleration: In order to reduce the overhead of handling them, very large data sets are
often split into smaller chunks and then combined to create an image mosaic. An example of this can be
found in aerial imagery which is usually comprised of thousands and thousands of small images at very
high resolution (order of cm). Both native and JAI implementations of mosaic are provided. When checked,
Mosaic Native Acceleration use the native implementation for creating mosaics.

5.3 Services

GeoServer serves data using standard protocols established by the Open Geospatial Consortium (OGC).
Web Coverage Service (WCS) allows for requests of coverage data (rasters); Web Feature Service (WFS)
allows for requests of geographical feature data (vectors); and Web Map Service (WMS) allows for requests
of images generated from geographical data.

This section of the Web Administration Interface allows for the configuration of these services as used by
GeoServer.

5.3.1 WCS

The Web Coverage Service (WCS) offers few options for changing coverage functionality. While various
elements can be configured for WFS and WMS requests, WCS allows only metadata information to be
edited. This metadata information, entitled Service Metadata, are elements common to WCS, WFS and
WMS requests.

5.3. Services 61

http://www.opengeospatial.org/

GeoServer User Manual, Release 2.1-RC4

Figure 5.8: WCS Configuration page

62 Chapter 5. Web Administration Interface

GeoServer User Manual, Release 2.1-RC4

Service Metadata

WCS, WFS, and WMS use common metadata definitions. These nine elements are briefly described in the
following table. Though these field types are the same regardless of service, their values are not shared.
As such, parameter definitions below refer to the respective service. For example, “Enable” on the WFS
Service page, enables WFS service requests and has no effect on WCS or WMS requests.

Field Description
Enabled Specifies whether the respective services–WCS, WFS or WMS–should be enabled or

disabled. When disabled, the respective service requests will not be processed.
Strict CITE
compliance

When checked, enforces strict OGC Compliance and Interoperability Testing Initiative
(CITE) conformance. Recommended for use when running conformance tests.

Maintainer Name of the maintaining body
Online
Resource

Defines the top-level HTTP URL of the service. Typically the Online Resource is the
URL of the service “home page.” (Required)|

Title A human-readable title to briefly identify this service in menus to clients. (Required)
Abstract Provides a descriptive narrative with more information about the service.
Fees Indicates any fees imposed by the service provider for usage of the service. The

keyword NONE is reserved to mean no fees and fits most cases.
Access
Constraints

Describes any constraints imposed by the service provider on the service. The keyword
NONE is reserved to indicate no access constraints are imposed and fits most cases.

Keywords List of short words associated with the service to aid in cataloging. searching.

5.3.2 WFS

The Web Feature Service (WFS) page allows for configuration of features, service levels, and GML output.

Service Metadata

See the section on Service Metadata.

Features

The Open Geospatial Consortium (OGC) Web Feature Service (WFS) is a standard protocol for serving ge-
ographic features across the Web. Feature information that is encoded and transported using WFS includes
both feature geometry and feature attribute values. Basic Web Feature Service (WFS) supports feature query
and retrieval. Feature limits and bounding can be configured on the WFS page.

Maximum number of features: A WFS request can potentially contain a very large dataset that is imprac-
tical to download to a client, and/or too large for a client’s renderer. Maximum number of features sets the
global feature limit that a WFS GetFeature operation should generate, regardless of the actual number of
query hits. Maximum feature limits are also available for feature types. The default number is 1000000.

Return bounding box: Includes in the GetFeature GML output, an auto-calculated bounds element on each
feature type. Not typically enabled, as including bounding box takes up extra bandwidth.

Service Levels

GeoServer is compliant with the full “Transactional Web Feature Server” (WFS-T) level of service as defined
by the OGC. Specifying the WFS service level limits the capabilities of Geoserver while still remaining
compliant. The WFS Service Level is an integer bitmask that indicates what WFS operations are “turned
on.” It defines the available operations and content at a service instance

5.3. Services 63

http://www.opengeospatial.org/

GeoServer User Manual, Release 2.1-RC4

Figure 5.9: WFS configuration options

64 Chapter 5. Web Administration Interface

GeoServer User Manual, Release 2.1-RC4

Basic: The Basic service levels provides facilities for searching and retrieving feature data with the GetCa-
pabilities, DescribeFeatureType and GetFeature operations. It is compliant with the OGC basic Web Feature
Service. This is considered a READ-ONLY web feature service.

Transactional: In addition to all basic WFS operations, transactional service level supports transaction
requests. A transaction request facilities the creation, deletion, and updating of geographic features in
conformance with the OGC Transactional Web Feature Service (WFS-T).

Complete: Includes the LockFeature support to the suite of transactional level operations. LockFeature op-
erations help resolve links between related resources by processing lock requests on one or more instances
of a feature type.

GML

Geography Markup Language (GML) is the XML grammar defined by the Open Geospatial Consortium
(OGC) to express geographical features. GML serves as a modeling language for geographic systems as
well as an open interchange format for geographic transactions on the Internet.

The older GML standard, GML 2 encodes geographic information, including both spatial and non-spatial
properties. GML3 extends GML2 support to 3D shapes (surfaces and solids) as well as other advanced
facilities. GML3 is modular superset of GML2 that simplifies and minimizes the implementation size by
allowing users to select out necessary parts. Additions in GML3 include support for complex geometries,
spatial and temporal reference systems, topology, units of measure, metadata, gridded data, and default
styles for feature and coverage visualization. GML3 is almost entirely backwards compatible with GML2.

WFS 1.1.0 requests return GML3 as the default GML and style a Spatial Reference System (SRS) is in the
URN format. Meanwhile WFS 1.0.0 requests return GML2 as default and specify SRS in the XML or nor-
mal format. These formats effect the longitude/latitude (x/y) order of the returned data and are further
described below.

Normal: Returns the typical EPSG number: EPSG:XXXX. This formats the geographic coordinates in longi-
tude/latitude (x/y) order.

XML: Returns a URL that identifies each EPSG code: http://www.opengis.net/gml/srs/epsg.xml#XXXX.
This formats the geographic coordinates in longitude/latitude (x/y) order.

URN: WFS 1.1.1 only. Returns the colon delimited SRS formatting: urn:x-ogc:def:crs:EPSG:XXXX.
This formats data in the traditional axis order for geographic and cartographic systems: latitude/longitude
(y/x).

5.3.3 WMS

The Web Map Service (WMS) page allows for configuration of raster rendering and SVG options.

Service Metadata

See the section on Service Metadata.

Raster Rendering Options

The Web Map Service Interface Standard (WMS) provides a simple way to request and serve geo-registered
map images. During pan and zoom operations, WMS requests generate map images through a variety
of raster rendering processes. Such image manipulation is generally called resampling, interpolation, or
down-sampling. GeoServer supports three resampling methods that determine how cell values of a raster

5.3. Services 65

http://portal.opengeospatial.org/files/?artifact_id=11339

GeoServer User Manual, Release 2.1-RC4

Figure 5.10: WMS configuration options

66 Chapter 5. Web Administration Interface

GeoServer User Manual, Release 2.1-RC4

are outputted. These sampling methods–Nearest Neighbor, Bilinear Interpolation and Bicubic–are available
on the Default Interpolation drop-down menu.

Nearest Neighbor: Uses the center of nearest input cell to determine the value of the output cell. Original
values are retained and no new averages are created. Because image values stay exactly the same, rendering
is fast but possibly pixelated from sharp edge detail. Nearest neighbor interpolation is recommended for
categorical data such as land use classification.

Bilinear Determines the value of the output cell based by sampling the value of the four nearest cells
by linear weighting. The closer an input cell, the higher its influence of on the output cell value. Since
output values may differ from nearest input, bilinear interpolation is recommended for continuous data
like elevation and raw slope values. Bilinear interpolation takes about five times as long as nearest neighbor
interpolation.

Bicubic Looks at the sixteen nearest cells and fits a smooth curve through the points to find the output
value. Bicubic interpolation may both change the input value as well as place the output value outside
of the range of input values. Bicubic interpolation is recommended for smoothing continuous data, but at
significant costs to speed.

Watermark Settings

Watermarking is the process of embedding an image into a map. Watermarks are usually used for brand-
ing, copyright and security measures. Configuring watermarking is done in the WMS watermark settings
section.

Enable Watermark: Turns on watermarking. When checked, all maps will render with the same watermark.
It is not currently possible to specify watermarking on a per-layer or per-feature basis.

Watermark URL: This is the location of the graphic for the watermark. The graphic can be referenced as an
absolute path (e.g., C:GeoServerwatermark.png), a relative one inside GeoServer’s data directory (e.g.,
watermark.png), or a URL (e.g., http://www.example.com/images/watermark.png).

Each of these methods have their own advantages and disadvantages. When using an absolute or relative
link, GeoServer keeps a cached copy of the graphic in memory, and won’t continually link to the original
file. This means that if the original file is subsequently deleted, GeoServer won’t register it missing until
the watermark settings are edited. Using a URL might seem more convenient, but it is more I/O intensive.
GeoServer will load the watermark image for every WMS request. Also, should the URL cease to be valid,
the layer will not properly display.

Watermark Transparency: Determines the opacity level of the watermark. Numbers range between 0
(opaque) and 100 (fully invisible).

Watermark Position: Specifies the position of the watermark relative to the WMS request. The nine options
indicate which side and corner to place the graphic (top-left, top-center, top-right, etc). The default water-
mark position is bottom-right. Note that the watermark will always be displayed flush with the boundary.
If extra space is desired, the graphic itself needs to change.

Because each WMS request renders the watermark, a single tiled map positions one watermark relative
to the view window while a tiled map positions the watermark for each tile. The only layer specific as-
pect of watermarking occurs because a single tile map is one WMS request, whereas a tiled map contains
many WMS requests. (The latter watermark display resembles Google Maps faint copyright notice in their
Satellite imagery.) The following three examples demonstrate watermark position, transparency and tiling
display, respectively.

5.3. Services 67

GeoServer User Manual, Release 2.1-RC4

Figure 5.11: Single tile watermark (aligned top-right, transparency=0)

68 Chapter 5. Web Administration Interface

GeoServer User Manual, Release 2.1-RC4

Figure 5.12: Single tile watermark (aligned top-right, transparency=90)

5.3. Services 69

GeoServer User Manual, Release 2.1-RC4

Figure 5.13: Tiled watermark (aligned top-right, transparency=90)

70 Chapter 5. Web Administration Interface

GeoServer User Manual, Release 2.1-RC4

SVG Options

The GeoServer WMS supports SVG (Scalable Vector Graphics) as an output format. GeoServer currently
supports two SVG renderers available on the SVG producer drop down menu.

SVG Producer:

1. Simple: Simple SVG renderer. It has limited support for SLD styling, but is very fast.

2. Batik: Batik renderer (as it uses the Batik SVG Framework). It has full support for SLD styling, but is
slower.

Enable Anti-aliasing Anti-aliasing is a technique for making edges appear smoother by filling in the edges
of an object with pixels that are between the object’s color and the background color. Anti-aliasing creates
the illusion of smoother lines and smoother selections. Turning on anti-aliasing will generally make your
maps look nicer, but will increase the size of the images returned, and will take a slight bit longer. Note that
if you are overlaying the anti-aliased map on top of others it can sometimes backfire with transparencies,
since it mixes with the colors behind and can create a “halo” effect.

5.4 Data

This section is the largest and perhaps the most important section of the Web Administration Interface.
Each subsection links directly to a data type page with add, edit and delete capabilities.

As seen in the example below, the data view page displays a table of indexed data.

Figure 5.14: Layers page

To alphabetically sort a data type, click on the column header.

5.4. Data 71

GeoServer User Manual, Release 2.1-RC4

Figure 5.15: On the left an unsorted column; on the right a sorted column.

For simple searching of data type contents, enter the search criteria in the search box and hit Enter.
GeoServer will search the data types that are relevant to your query, and return a Search Results page.

Figure 5.16: Search results for the query “top”.

Specific details for adding, editing and deleting various data types are discussed in the following sections.

5.4.1 Workspaces

This section is for viewing and configuring workspaces. Analogous to a namespace, a workspace is a
container which is used to organize other items. In GeoServer, a workspace is often used to group sim-
ilar layers together. Individual layers are often referred to by their workspace name, colon, then store.
(Ex: topp:states) Two different layers having the same name can exist as long as they exist in different
workspaces. (Ex: sf:states, topp:states).

72 Chapter 5. Web Administration Interface

GeoServer User Manual, Release 2.1-RC4

Figure 5.17: Workspaces page

Edit Workspace

In order to view details and edit a workspace, click on a workspace name.

Figure 5.18: Workspace named “topp”

A workspace consists of a name and a Namespace URI (Uniform Resource Identifier). The workspace name
has a maximum of ten characters and may not contain space. A URI is similar to URLs, except URIs need
not point to a location on the web, and only need to be a unique identifier. For a Workspace URI, we
recommend using a URL associated with your project, with perhaps a different trailing identifier, such as
http://www.openplans.org/topp for the “topp” workspace.

Add or Remove a Workspace

The buttons for adding and removing a workspace can be found at the top of the Workspaces view page.

5.4. Data 73

GeoServer User Manual, Release 2.1-RC4

Figure 5.19: Buttons to add and remove

To add a workspace, select the Add new workspace button. You will be prompted to enter the the
workspace name and URI.

Figure 5.20: New Workspace page with example

In order to remove a workspace, click on the workspace’s corresponding check box. As with the layer
deletion process, multiple workspaces can be checked for removal on a single results page. Click the Re-
move selected workspaces(s) button. You will be asked to confirm or cancel the deletion. Clicking OK will
remove the workspace.

5.4.2 Stores

A store connects to a data source that contains raster or vector data. A data source can be a file or group of
files such as a table in a database, a single file (such as a shapefile), or a directory (such as Vector Product
Format library). The store construct is used so that connection parameters are defined once, rather than for
each piece of data in a source. As such, it is necessary to register a store before loading any data.

While there are many potential formats for data source, there are only four types of stores. For raster data,
a store can be a file. For vector data, a store can be a file, database, or server.

Type Icon Description

raster data in a file

vector data in a file

vector data in a database

vector server (web feature server)

Editing a Store

In order to view and edit a store, click on a store name. The exact contents of this page will depend on the
specific format chosen. (See the section on Working with Data for information about specific data formats.)

74 Chapter 5. Web Administration Interface

GeoServer User Manual, Release 2.1-RC4

Figure 5.21: Workspace removal confirmation

Figure 5.22: Stores View

5.4. Data 75

GeoServer User Manual, Release 2.1-RC4

In the example below we have the contents of the nurc:ArcGridSample store.

Figure 5.23: Editing a raster data store

While connection parameters will vary depending on data format, some the basic information is common
across formats. The Workspace drop down menu lists all registered workspaces. The store is assigned
to the selected workspace (nurc). Data Source Name is the store name as listed on the view page. The
Description is optional and only displays in the administration interface. Enabled allows you to enable or
disable access to the store, along with all data defined in it.

Adding a Store

The buttons for adding and removing a workspace can be found at the top of the Stores page.

To add a workspace, select the Add new Store button. You will be prompted to choose a data source.
GeoServer natively supports many formats (with more available via extensions). Click the appropriate
data source to continue.

The next page will configure the store. (The example below shows the ArcGrid raster configuration page.)
However, since connection parameters differ across data sources, the exact contents of this page depend
on the store’s specific format. Please see the section on Working with Data for information on specific data
formats.

76 Chapter 5. Web Administration Interface

GeoServer User Manual, Release 2.1-RC4

Figure 5.24: Buttons to add and remove stores

Figure 5.25: Choosing the data source for a new store

5.4. Data 77

GeoServer User Manual, Release 2.1-RC4

Figure 5.26: Configuration page for an ArcGrid raster data source

78 Chapter 5. Web Administration Interface

GeoServer User Manual, Release 2.1-RC4

Removing a Store

In order to remove a store, click on the store’s corresponding check box. Multiple stores can be checked for
batch removal.

Figure 5.27: Stores checked for deletion

Click the Remove selected Stores button. You will be asked to confirm the deletion of the the data within
each store. Selecting OK removes the store(s), and will redirect to the main Stores page.

5.4.3 Layers

In Geoserver, the term layer refers to raster or vector data that contains geographic features. Vector layers
are analogous to featureTypes and raster layers are analogous to coverages. Layers represent each feature
that needs to be shown on the map. All layers have a source of data, called a Store.

In the layers section, you can view and edit an existing layers, add (register) a new layer, or delete (unregis-
ter) a layer. As in previous View tables, the Layers View page displays relevant dependencies, i.e., the layer
within the store within the workspace. The View page also displays the layer’s status and native SRS.

Layer Types

Layers are organized into two types of data, raster and vector. The difference between the two formats rests
in how they store spatial information. Vector types store information about feature types as mathematical
paths–a point as a single x,y coordinate, lines as a series of x,y coordinates, and polygons as a series of x,y
coordinates that start and end on the same place. Raster format data is a cell-based representation of earth
surface features. Each cell has a distinct value, and all cells with the same value represent a specific feature.

5.4. Data 79

GeoServer User Manual, Release 2.1-RC4

Figure 5.28: Confirm deletion of stores

Figure 5.29: Layers View

80 Chapter 5. Web Administration Interface

GeoServer User Manual, Release 2.1-RC4

Field Description

raster (grid)

vector (feature)

Edit Layer Data

Clicking the layer name opens a layer configuration panel. The Data tab, activated by default, allows you
to define and change data parameters for a layer.

Figure 5.30: Layers Data View

5.4. Data 81

GeoServer User Manual, Release 2.1-RC4

Basic Info

The beginning sections–Basic Resource Info, Keywords and Metadata link are analogous to the Service Meta-
data section for WCS, WFS and WMS. These sections provide “data about the data,” specifically textual
information that make the layer data easier to work with it.

Name: Identifier used to reference the layer in WMS requests.

Title: A human-readable description to briefly identify the layer to clients. (Required)

Abstract: Provides a descriptive narrative with more information about the layer.

Keywords: List of short words associated with the layer to aid in catalog searching.

Metadata Link: Allows linking to external documents that describe the data layer. Currently only two
standard format types are valid: TC211 and FGDC. TC211 refers to the metadata structure established by
the ISO Technical Committee for Geographic Information/Geomatics (ISO/TC 211) while FGDC refers to
those set out by the Federal Geographic Data Committee (FGDC) of the United States.

Figure 5.31: Adding a metadata link n FGDC format

Coordinate Reference Systems

A coordinate reference system (CRS) defines how your georeferenced spatial data relates to real locations
on the Earth’s surface. CRSs are part of a more general model called Spatial Reference Systems (SRS), which
includes referencing by coordinates and geographic identifiers. Geoserver needs to know what Coordinate
Reference System of your data. This information is used for computing the latitude/longitude bounding
box and reprojecting during both WMS and WFS requests

Figure 5.32: Adding a metadata link n FGDC format

Native SRS: Refers to the projection the layer is stored in. Clicking on the projection link displays a de-
scription of the SRS.

Declared SRS: Refers to what GeoServer gives to clients.

82 Chapter 5. Web Administration Interface

http://www.isotc211.org/
http://www.fgdc.gov/

GeoServer User Manual, Release 2.1-RC4

SRS Handling: Determines how GeoServer should handle projection when the two SRS differ.

Bounding Boxes

The bounding box is determines the extent of a layer. The Native Bounding Box are the bounds of the data
projected in the Native SRS. You can generate these bounds by clicking the Compute from data button.
The Lat/Long Bounding Box computes the bounds based on the standard lat/long. These bounds can be
generated by clicking the Compute from native bounds button.

Figure 5.33: Bounding Box for sf:archsites

Coverage Parameters (Raster)

Optional coverage parameters are possible for certain types of raster data. WorldImage formats request a
valid range of grid coordinates in 2 dimensions known as a ReadGridGeometry2D. For ImageMosaic, you
can use InputImageThresholdValue, InputTransparentColor, and OutputTransparentColor to control the
rendering of the mosaic in terms of thresholding and transparency.

Feature Type Details (Vector)

Instead of coverage parameters, vector layers have a list of the Feature Type Details. These include the
Property and Type of a data source. For example, the sf:archsites layer show below includes a geom-
etry, the_geom of type point.

The Nillable refers to whether the property requires a value or may be flagged as being null. Meanwhile
Min/Max Occurrences refers to how many values a field is allowed to have. Currently both Nillable
and Min/Max Occurrences are set to true and 0/1 but might be extended with future work on complex
features.

Edit Publishing Information

The publishing tab allows for configuration of HTTP and WCS settings.

5.4. Data 83

GeoServer User Manual, Release 2.1-RC4

Figure 5.34: Feature Types Detaisl for sf:archsites

Figure 5.35: Editing Publishing Data

84 Chapter 5. Web Administration Interface

GeoServer User Manual, Release 2.1-RC4

HTTP Settings: Cache parameters that apply to the HTTP response from client requests. If Response Cache
Headers is checked, GeoServer will not request the same tile twice within the time specified in Cache Time.
One hour measured in seconds (i.e., 3600), is the default value for Cache Time.

WMS Settings: Sets the WMS specific publishing parameters.

• Defalt style: The style that will be used when the client does not specify a named style in GetMap
requests

• Additional styles: Other styles that can be associated to this layers. Some clients (and the GeoServer
own preview) will present those as styling alternatives for that layer to the end user

• Default rendering buffer (available since version 2.0.3): the default value of the buffer
GetMap/GetFeatureInfo vendor parameter. See the WMS vendor parameters for more details

• Default WMS path: the location of the layer in the WMS capabilities layer tree. Useful to build non
opaque layer groups

WMS Attribution: Sets publishing information about data providers.

• Attribution Text: Human-readable text describing the data provider. This might be used as the text for
a hyperlink to the data provider’s web site.

• Attribution Link: A URL to the data provider’s website.

• Logo URL: A URL to an image that serves as a logo for the data provider.

5.4. Data 85

GeoServer User Manual, Release 2.1-RC4

Figure 5.36: WMS Attribution

• Logo Content Type, Width, and Height: These fields provide information about the logo image that
clients may use to assist with layout. GeoServer will auto-detect these values if you click the Auto-
detect image size and type link at the bottom of the section.

The text, link, and URL are each advertised in the WMS Capabilities document if they are provided; some
WMS clients will display this information to allow users to know which providers provide a particular
dataset. If you omit some of the fields, those that are provided will be published and those that are not will
be omitted from the Capabilities document.

WFS Settings: For the layer, sets the maximum number of features a WFS GetFeature operation should
generate, regardless of the actual number of query hits.

WCS Settings: Provides a list the SRS the layer can be converted to. New Request SRS allows you to add
an SRS to that list.

Interpolation Methods: Sets the raster rendering process.

Formats: Lists which output formats a layers supports.

Default Title: Assigns a style to a layer. Additional styles are ones published with the layer in the capabil-
ities document.

Geosearch: When enabled, allows for Google Geo search crawler, to index from this particular layer. See
What is a Geo Sitemap? for more information.

KML Format Settings: Allows for limiting features based on certain criteria, otherwise known as regiona-
tion. Choose which feature should show up more prominently than others with the guilabel:Default Region-
ating Attribute. There are four types of Regionating Methods:

• external-sorting: Creates a temporary auxiliary database within GeoServer. It takes slightly extra time
to build the index upon first request.

• geometry: Externally sorts by length (if lines) or area (if polygons).

86 Chapter 5. Web Administration Interface

http://www.google.com/support/webmasters/bin/answer.py?hl=en\&answer=94554

GeoServer User Manual, Release 2.1-RC4

• native-sorting: Uses the default sorting algorithm of the backend where the data is hosted. It is faster
than external-sorting, but will only work with PostGIS datastores.

• random: Uses the existing order of the data and does not sort.

Add or Delete a Layer

At the upper left-hand corner of the layers view page there are two buttons for the adding and deletion of
layers. The green plus button allows you to add a new layer, here referred to as resource. The red minus
button allows you to remove selected layers.

Figure 5.37: Buttons to Add or Remove a Layer

Clicking on the Add a new resource button brings up a New Layer Chooser panel. The drop down menu
displays all currently enabled stores. From this menu, select the Store where the layer should be added.

Figure 5.38: List of all currently enabled stores

Upon selection of a Store, a view table of existing layers within the selected store will be displayed. In
this example, giant_polygon, poi, poly_landmarks and tiger_roads are all layers within the NYC
store.

Upon selection of a layer name, you’re redirected to a layer edit page. Edit Layer Data

5.4. Data 87

GeoServer User Manual, Release 2.1-RC4

Figure 5.39: View of all layers

In order to delete a layer, click on the check box on the left side of each layer row. As shown below, multiple
layers can be checked for removal on a single results page. It should be noted, however, that selections for
removal will not persist from one results pages to the next.

All layers can be selected for removal by enabling the checkbox in the header row.

Once layer(s) are checked, the Remove selected resources link is activated. Upon clicking on the link, you
will be asked to confirm or cancel the deletion. Selecting OK successfully deletes the layer.

5.4.4 Layer Groups

A layer group is a group of layers that can be referred to by one name. This allows for simpler WMS
requests, as the request need only refer to one layer as opposed to multiple inidividual layers. Layer groups
act just like standard layers as far as WMS is concerned.

Edit Layer Group

To bring up the layer group edit page, click on a layer group name. The initial fields allow for the config-
uration of the name, bounds, and projection of the layer group. To automatically set bounding box, select
the Generate Bounds button, other put in your own custom numbers. To select an appropriate projection
click the Find button.

Note: A layer group can consist of layers with dissimilar bounds and projections. GeoServer will automat-
ically reproject all layers to the projection of the layer group.

At the bottom of the page is a table listing the layers contained within the current layer group. When a
layer group is processed, the layers are rendered in the order provided, so that the layer at the bottom of
list will be rendered last, and thus will show on top of the other layers.

The Style column shows the style associated with each layer. To change the style associated with a layer,
click the appropriate style link. A list of enabled styles will be displayed. Clicking on a style name reassigns
the layer’s style.

To remove a layer from the layer group, select the layer’s button in the Remove column. You will not be
prompted to confirm or cancel this deletion.

You can view layers group in the Layer Preview section of the web admin.

88 Chapter 5. Web Administration Interface

GeoServer User Manual, Release 2.1-RC4

Figure 5.40: Layers nurc:Img_Sample, sf:restricted, sf:streams selected for deletion

Figure 5.41: All layers selected to be deleted

5.4. Data 89

GeoServer User Manual, Release 2.1-RC4

Figure 5.42: Layer Groups page

Figure 5.43: Layer Groups Edit page

90 Chapter 5. Web Administration Interface

GeoServer User Manual, Release 2.1-RC4

Figure 5.44: Style editing for a layer within a layer group

A layer can be positioned higher or lower on this list by clicking the green up or down arrows, respectively.

A layer can be added to the list by pressing the Add Layer... button at the top of the layer table. From the
resulting list of layers, select the layer to be added by clicking on the layer name. This latest layer will be
appended to the bottom of the layer list.

Add a Layer Group

The buttons for adding and removing a layer group can be found at the top of the Layer Groups page.

To add a new layer group, select the “Add a new layer group” button. You will be prompted to name the
layer group.

When finished, click Submit. You will be redirected to an empty layer group configuration page. Begin by
adding layers by clicking the Add layer... button (described in the previous section). Once the layers are
positioned accordingly, press Generate Bounds to automatically generate the bounding box and projection.
Press Save to save the new layer group.

Remove a layer group

In order to remove a layer group, click on the check box next to the layer group. Multiple layer groups can
be selected for match removal. Click the remove selected layer group(s) link. You will be asked to confirm
or cancel the deletion. Selecting OK successfully removes the layer group.

5.4. Data 91

GeoServer User Manual, Release 2.1-RC4

Figure 5.45: Openlayers preview of the layer group “tasmania”

92 Chapter 5. Web Administration Interface

GeoServer User Manual, Release 2.1-RC4

Figure 5.46: Dialog for adding a layer to a layer group

Figure 5.47: Buttons to add or remove a layer group

Figure 5.48: New layer group dialog

5.4. Data 93

GeoServer User Manual, Release 2.1-RC4

Figure 5.49: New layer group configuration page

Figure 5.50: Removing a layer group

94 Chapter 5. Web Administration Interface

GeoServer User Manual, Release 2.1-RC4

5.4.5 Styles

Styles are the method of rendering geospatial data. Styles for GeoServer are written in Styled Layer De-
scriptor (SLD), a subset of XML. Please see the section on Styling for more information on working with
styles.

On this page, you can register or create a new style, edit an existing style, or delete remove a style.

Figure 5.51: Styles page

Edit Styles

The Style Editor page presents options for configuring a style’s name and code. SLD names are specified at
the top in the name field. Typing or pasting of SLD code can be done in one of two modes. The first mode is
an embedded EditArea a rich editor. The second mode alternate mode is an unformatted text editor. Check
the Toggle Editor to switch between modes.

The rich editor is designed for text formatting, search and replace, line numbering, and real-time syntax
highlighting. You can also switch view to full-screen mode for a larger editing area.

5.4. Data 95

http://www.cdolivet.com/index.php?page=editArea

GeoServer User Manual, Release 2.1-RC4

Figure 5.52: Rich text editor

96 Chapter 5. Web Administration Interface

GeoServer User Manual, Release 2.1-RC4

Figure 5.53: Plain text editor

5.4. Data 97

GeoServer User Manual, Release 2.1-RC4

Button Description

search

go to line

fullscreen mode

undo

redo

toggle syntax highlight on/off

reset highlight (if desynchronized from text)

about

To confirm that the SLD code is fully compliant with the SLD schema, press the Validate button. A message
box will confirm whether the style has validation errors.

Note: GeoServer will sometimes be able to render styles that fail validation, but this is not receommended.

Figure 5.54: No validation errors

Figure 5.55: Validation error message

Add a Style

The buttons for adding and removing a style can be found at the top of the Styles page.

To add a new layer group, select the Add a new style button. You will be redirected to an editor page. Enter
a name for the style. The editor page provides two options for submitting an SLD. You can paste the SLD
directly into the editor, or you can select and upload a local file that contains the SLD.

Once a style is successfully submitted, you will be redirected to the main Styles page where the style will
be listed.

98 Chapter 5. Web Administration Interface

GeoServer User Manual, Release 2.1-RC4

Figure 5.56: Buttons to add or remove a style

Figure 5.57: Uploading an SLD file from your local computer

Remove a Style

In order to remove a style, click on the check box next to the style. Multiple layer groups can be checked for
batch removal. Click the Remove selected style(s) link at the top of the page. You will be asked to confirm
or cancel the deletion. Clicking OK removes the layer group.

5.5 Demos

This page contains helpful links to various information pages regarding GeoServer and its features. You do
not need to be logged into GeoServer to access this page.

5.5.1 Demo Requests

This page has example WMS, WCS and WFS requests for GeoServer that you can use, examine, and change.
Select a request from the drop down list.

Both Web Feature Service (Web Feature Service) as well as Web Coverage Service (Web Coverage Service)
requests will display the request URL and the XML body. Web Map Service (Web Map Service) requests will
only display the request URL.

Click Submit to send the request to GeoServer. For WFS and WCS requests, GeoServer will automatically
generate an XML reponse.

Submitting a WMS GetMap request displays an image based on the provided geographic data.

WMS GetFeatureInfo requests retrieve information regarding a particular feature on the map image.

5.5.2 SRS

GeoServer natively supports almost 4,000 Spatial Referencing Systems (SRS), also known as projections,
and more can be added. A spatial reference system defines an ellipsoid, a datum using that ellipsoid,
and either a geocentric, geographic or projection coordinate system. This page lists all SRS info known to
GeoServer.

The Code column refers to the unique integer identifier defined by the author of that spatial reference
system. Each code is linked to a more detailed description page, accessed by clicking on that code.

5.5. Demos 99

GeoServer User Manual, Release 2.1-RC4

Figure 5.58: Confirmation prompt for removing styles

Figure 5.59: Demos page

100 Chapter 5. Web Administration Interface

GeoServer User Manual, Release 2.1-RC4

Figure 5.60: Selecting demo requests

5.5. Demos 101

GeoServer User Manual, Release 2.1-RC4

Figure 5.61: WFS 1.1 DescribeFeatureType sample request

Figure 5.62: XML reponse from a WFS 1.1 DescribeFeatureType sample request

102 Chapter 5. Web Administration Interface

GeoServer User Manual, Release 2.1-RC4

Figure 5.63: OpenLayers WMS GetMap request

The title of each SRS is composed of the author name and the unique integer identifier (code) defined by the
Author. In the above example, the author is the European Petroleum Survey Group (EPSG) and the Code
is 2000. The fields are as follows:

Description: A short text description of the SRS.

WKT: A string describing the SRS. WKT stands for “Well Known Text.”

Area of Validity: The bounding box for the SRS.

5.6 Layer Preview

This page provides layer views in various output formats. Note, a layer must be enabled in order to be
previewed.

Each layer row consists of a type, name, title, and available formats for viewing.

Field Description

Raster (grid) layer

Vector (feature) layer

Layer group

Name refers to the Workspace and Layer Name of a layer, while Title refers to the brief description con-
figured in the Edit Layer Data panel. In the following example, nurc refers to the Workspace, Arc_Sample
refers to the Layer Name and “A sample ArcGrid field” is specified from Edit Later Data panel.

5.6. Layer Preview 103

http://www.epsg.org/

GeoServer User Manual, Release 2.1-RC4

Figure 5.64: WMS GetFeatureInfo request

Figure 5.65: Listing of all Spatial Referencing Systems (SRS) known to GeoServer

104 Chapter 5. Web Administration Interface

GeoServer User Manual, Release 2.1-RC4

Figure 5.66: Details for SRS EPSG:2000

5.6. Layer Preview 105

GeoServer User Manual, Release 2.1-RC4

Figure 5.67: Layer’s Preview Page

Figure 5.68: Single Layer preview row

106 Chapter 5. Web Administration Interface

GeoServer User Manual, Release 2.1-RC4

5.6.1 Output Formats

The Layer Preview page supports a variety of output formats for further use or data sharing. You can
preview all three layer types in the common OpenLayers and KML formats. Similarly, using the “All
formats” drop down menu you can preview all layer types in seven additional output formats–AtomPub,
GIF, GeoRss, JPEG, KML (compressed), PDF, PNG, SVG, and TIFF. Only Vector layers offer the WFS output
previews, including the common GML as well as the CSV, GML3, GeoJSON and Shapefile formats. The
table below provides a brief description of all supported output formats, organized by output type: image,
text or data.

Image Outputs

All image outputs can be initiated from a WMS getMap request on either a raster, vector or coverage data.
WMS are methods that allows visual display of spatial data without necessarily providing access to the
features that comprise those data.

Format Description
KML KML (Keyhole Markup Language) is an XML-based language schema for expressing

geographic data in an Earth browser, such as Google Earth or Google Maps. KML uses a
tag-based structure with nested elements and attributes. For GeoServer, KML files are
distributed as a KMZ, which is a zipped KML file.

JPEG WMS output in raster format. The JPEG is a compressed graphic file format, with some loss
of quality due to compression. It is best used for photos and not recommended for exact
reproduction of data.

GIF WMS output in raster format. The GIF (Graphics Interchange Format) is a bitmap image
format best suited for sharp-edged line art with a limited number of colors. This takes
advantage of the format’s lossless compression, which favors flat areas of uniform color with
well defined edges (in contrast to JPEG, which favors smooth gradients and softer images).
GIF is limited to an 8-bit palette, or 256 colors.

SVG WMS output in vector format. SVG (Scalable Vector Graphics) is a language for modeling
two-dimensional graphics in XML. It differs from the GIF and JPEG in that it uses graphic
objects rather than individual points.

TIFF WMS output in raster format. TIFF (Tagged Image File Format) is a flexible, adaptable format
for handling multiple data in a single file. GeoTIFF containts geographic data embedded as
tags within the TIFF file.

PNG WMS output in raster format. The PNG (Portable Network Graphics) file format was created
as the free, open-source successor to the GIF. The PNG file format supports truecolor (16
million colors) while the GIF supports only 256 colors. The PNG file excels when the image
has large, uniformly coloured areas.

Open-
Layers

WMS GetMap request outputs a simple OpenLayers preview window. OpenLayers is an
open source JavaScript library for displaying map data in web browsers. The OpenLayers
output has some advanced filters that are not available when using a standalone version of
OpenLayers. Further, the generated preview contains a header with easy configuration
options for display.

PDF A PDF (Portable Document Format) encapsulates a complete description of a fixed-layout 2D
document,including any text, fonts, raster images, and 2D vector graphics.

5.6. Layer Preview 107

http://openlayers.org/

GeoServer User Manual, Release 2.1-RC4

Figure 5.69: Sample Image Output-an OpenLayers preview of nurc:Pk50095

108 Chapter 5. Web Administration Interface

GeoServer User Manual, Release 2.1-RC4

Text Outputs

For-
mat

Description

Atom-
Pub

WMS output of spatial data in XML format. The AtomPub (Atom Publishing Protocol) is an
application-level protocol for publishing and editing Web Resources using HTTP and XML.
Developed as a replacement for the RSS family of standards for content syndication, Atom
allows subscription of geo data.

GeoRss WMS GetMap request output of vector data in XML format. RSS (Rich Site Summary) is an
XML format for delivering regularly changing web content. GeoRss is a standard for encoding
location as part of a RSS feed.supports Layers Preview produces a RSS 2.0 documents, with
GeoRSS Simple geometries using Atom.

GeoJ-
SON

JavaScript Object Notation (JSON) is a lightweight data-interchange format based on the
JavaScript programming language. This makes it an ideal interchange format for browser
based applications since it can be parsed directly and easily in to javascript. GeoJSON is a
plain text output format that add geographic types to JSON.

CSV WFS GetFeature output in comma-delimited text. CSV (Comma Separated Values) files are text
files containing rows of data. Data values in each row are separated by commas. CSV files also
contain a comma-separated header row explaining each row’s value ordering. GeoServer’s
CSVs are fully streaming, with no limitation on the amount of data that can be outputted.

A fragment of a simple GeoRSS for nurc:Pk50095 using Atom:

<?xml version="1.0" encoding="UTF-8"?>
<rss xmlns:atom="http://www.w3.org/2005/Atom"

xmlns:georss="http://www.georss.org/georss" version="2.0">
<channel>

<title>Pk50095</title>
<description>Feed auto-generated by GeoServer</description>
<link>></link>
<item>
<title>fid--f04ca6b_1226f8d829e_-7ff4</title>
<georss:polygon>46.722110379286 13.00635746384126

46.72697223230676 13.308182612644663 46.91359611878293
13.302316867622581 46.90870264238999 12.999446822650462
46.722110379286 13.00635746384126

</georss:polygon>
</item>

</channel>
</rss>

Data Outputs

All data outputs are initiated from a WFS GetFeature request on vector data.

For-
mat

Description

GML2/3GML (Geography Markup Language) is the XML grammar defined by the Open Geospatial
Consortium (OGC) to express geographical features. GML serves as a modeling language for
geographic systems as well as an open interchange format for geographic data sharing. GML2
is the default (Common) output format, while GML3 is available from the “All Formats” drop
down menu.

Shape-
file

The ESRI Shapefile or simply a shapefile is the most commonly used format for exchanging
GIS data. GeoServer outputs shapefiles in zip format, with a directory of .cst, .dbf, .prg, .shp,
and .shx files.

5.6. Layer Preview 109

http://www.georss.org
http://json.org/
http://en.wikipedia.org/wiki/Open_Geospatial_Consortium
http://en.wikipedia.org/wiki/Open_Geospatial_Consortium

GeoServer User Manual, Release 2.1-RC4

110 Chapter 5. Web Administration Interface

CHAPTER 6

Working with Data

This section discusses the data sources that can GeoServer can read and access.

GeoServer allows the loading and serving of the following data formats by default:

• Vector data formats

– Shapefiles (including directories of shapefiles)

– PostGIS databases (with or without JNDI)

– External WFS layers

– Java Properties files

• Raster data formats

– ArcGrid

– GeoTIFF

– Gtopo30

– ImageMosaic

– WorldImage

• Other data formats

– External WMS layers

Other data sources require the use of GeoServer extensions, extra downloads that add functionality to
GeoServer. These extensions are always available on the GeoServer download page.

Warning: If an extension is required to load the data source, make sure to match the version of the
extension to the version of the GeoServer instance!

6.1 Shapefile

A shapefile is a popular geospatial vector data format.

Note: While GeoServer has robust support for the shapefile format, it is not the recommended format
of choice in a production environment. Databases such as PostGIS are more suitable in production and

111

http://geoserver.org/display/GEOS/Download

GeoServer User Manual, Release 2.1-RC4

offer better performance and scalability. See the section on Running in a Production Environment for more
information.

6.1.1 Adding a shapefile

A shapefile is actually a collection of files (with the extensions: .shp, .dbf, .shx, .prj, and sometimes
others). All of these files need to be present in the same directory in order for GeoServer to accurately read
them. As with all formats, adding a shapefile to GeoServer involves adding a new store to the existing
Stores through the Web Administration Interface.

Warning: The .prj file, while not mandatory, is strongly recommended when working with GeoServer
as it contains valuable projection info. GeoServer may not be able to load your shapefile without it!

To begin, navigate to Stores→ Add a new store→ Shapefile.

Option Description
Workspace Name of the workspace to contain the store. This will also be the prefix of the layer

created from the store.
Data Source
Name

Name of the shapefile as known to GeoServer. Can be different from the filename. The
combination of the workspace name and this name will be the full layer name (ex:
topp:states).

Description Description of the shapefile/store.
Enabled Enables the store. If unchecked, no data in the shapefile will be served.
URL Location of the shapefile. Can be an absolute path (such as

file:C:\Data\shapefile.shp) or a path relative to the data directory (such as
file:data/shapefile.shp.

namespace Namespace to be associated with the shapefile. This field is altered by changing the
workspace name.

create spatial
index

Enables the automatic creation of a spatial index.

charset Character set used to decode strings from the .dbf file.
memory
mapped
buffer

Enables the use of memory mapped I/O.

When finished, click Save.

6.1.2 Configuring a shapefile layer

Shapefiles contain exactly one layer, which needs to be added as a new layer before it will be able to be
served by GeoServer. See the section on Layers for how to add and edit a new layer.

6.2 PostGIS

PostGIS is an open source spatial database based on PostgreSQL, and is currently one of the most popular
open source spatial databases today.

112 Chapter 6. Working with Data

http://postgis.org
http://postgresql.com/

GeoServer User Manual, Release 2.1-RC4

Figure 6.1: Adding a shapefile as a store

6.2. PostGIS 113

GeoServer User Manual, Release 2.1-RC4

6.2.1 Adding a PostGIS database

As with all formats, adding a shapefile to GeoServer involves adding a new store to the existing Stores
through the Web Administration Interface.

Using default connection

To begin, navigate to Stores→ Add a new store→ PostGIS NG.

Option Description
Workspace Name of the workspace to contain the database. This will also be the prefix of any

layer names created from tables in the database.
Data Source
Name

Name of the database. This can be different from the name as known to
PostgreSQL/PostGIS.

Description Description of the database/store.
Enabled Enables the store. If disabled, no data in the database will be served.
dbtype Type of database. Leave this value as the default.
host Host name where the database exists.
port Port number to connect to the above host.
database Name of the database as known on the host.
schema Schema in the above database.
user User name to connect to the database.
passwd Password associated with the above user.
namespace Namespace to be associated with the database. This field is altered by changing the

workspace name.
max
connections

Maximum amount of open connections to the database.

min
connections

Minimum number of pooled connections.

fetch size Number of records read with each interaction with the database.
Connection
timeout

Time (in seconds) the connection pool will wait before timing out.

validate
connections

Checks the connection is alive before using it.

Loose bbox Performs only the primary filter on the bounding box. See the section on Using loose
bounding box for details.

prepared-
Statements

Enables prepared statements.

When finished, click Save.

Using JNDI

GeoServer can also connect to a PostGIS database using JNDI (Java Naming and Directory Interface).

To begin, navigate to Stores→ Add a new store→ PostGIS NG (JNDI).

114 Chapter 6. Working with Data

http://java.sun.com/products/jndi/

GeoServer User Manual, Release 2.1-RC4

Figure 6.2: Adding a PostGIS database

6.2. PostGIS 115

GeoServer User Manual, Release 2.1-RC4

Figure 6.3: Adding a PostGIS database (using JNDI)

116 Chapter 6. Working with Data

GeoServer User Manual, Release 2.1-RC4

Option Description
Workspace Name of the workspace to contain the store. This will also be the prefix of all of the

layer names created from the store.
Data Source
Name

Name of the database. This can be different from the name as known to
PostgreSQL/PostGIS.

Description Description of the database/store.
Enabled Enables the store. If disabled, no data in the database will be served.
dbtype Type of database. Leave this value as the default.
jndiReferen-
ceName

JNDI path to the database.

schema Schema for the above database.
namespace Namespace to be associated with the database. This field is altered by changing the

workspace name.

When finished, click Save.

6.2.2 Configuring PostGIS layers

When properly loaded, all tables in the database will be visible to GeoServer, but they will need to be
individually configured before being served by GeoServer. See the section on Layers for how to add and
edit new layers.

6.2.3 Using loose bounding box

When the option loose bbox is enabled, only the bounding box of a geometry is used. This can result in
a significant performance gain, but at the expense of total accuracy; some geometries may be considered
inside of a bounding box when they are technically not.

If primarily connecting to this data via WMS, this flag can be set safely since a loss of some accuracy is
usually acceptable. However, if using WFS and especially if making use of BBOX filtering capabilities, this
flag should not be set.

6.2.4 Publishing a PostGIS view

Publishing a view follows the same process as publishing a table. The only additional step is to manually
ensure that the view has an entry in the geometry_columns table.

For example consider a table with the schema:

my_table(id int PRIMARY KEY, name VARCHAR, the_geom GEOMETRY)

Consider also the following view:

CREATE VIEW my_view as SELECT id, the_geom FROM my_table;

Before this view can be served by GeoServer, the following step is necessary to manually create the
geometry_columns entry:

INSERT INTO geometry_columns VALUES (’’,’public’,’my_view’,’my_geom’, 2, 4326, ’POINT’);

6.2. PostGIS 117

GeoServer User Manual, Release 2.1-RC4

6.2.5 Performance considerations

GEOS

GEOS (Geometry Engine, Open Source) is an optional component of a PostGIS installation. It is recom-
mended that GEOS be installed with any PostGIS instance used by GeoServer, as this allows GeoServer to
make use of its functionality when doing spatial operations. When GEOS is not available, these operations
are performed internally which can result in degraded performance.

Spatial indexing

It is strongly recommended to create a spatial index on tables with a spatial component (i.e. containing a
geometry column). Any table of which does not have a spatial index will likely respond slowly to queries.

6.2.6 Common problems

Primary keys

In order to enable transactional extensions on a table (for transactional WFS), the table must have a primary
key. A table without a primary key is considered read only to GeoServer.

6.3 Directory of spatial files

The directory store automates the process of loading multiple shapefiles into GeoServer. Loading a direc-
tory that contains multiple shapefiles will automatically add each shapefile to GeoServer.

Note: While GeoServer has robust support for the shapefile format, it is not the recommended format
of choice in a production environment. Databases such as PostGIS are more suitable in production and
offer better performance and scalability. See the section on Running in a Production Environment for more
information.

6.3.1 Adding a directory

To begin, navigate to Stores→ Add a new store→ Directory of spatial files.

Option Description
Workspace Name of the workspace to contain the store. This will also be the prefix of all of the layer

names created from shapefiles in the store.
Data
Source
Name

Name of the store as known to GeoServer.

Descrip-
tion

Description of the directory store.

Enabled Enables the store. If disabled, no data in any of the shapefiles will be served.
URL Location of the directory. Can be an absolute path (such as

file:C:\Data\shapefile_directory) or a path relative to the data directory (such
as file:data/shapefile_directory.

names-
pace

Namespace to be associated with the store. This field is altered by changing the
workspace name.

When finished, click Save.

118 Chapter 6. Working with Data

http://trac.osgeo.org/geos/

GeoServer User Manual, Release 2.1-RC4

Figure 6.4: Adding a directory of spatial files as a store

6.3. Directory of spatial files 119

GeoServer User Manual, Release 2.1-RC4

6.3.2 Configuring shapefiles

All of the shapefiles contained in the directory store will be loaded as part of the directory store, but they
will need to be individually configured as new layers they can be served by GeoServer. See the section on
Layers for how to add and edit new layers.

6.4 External Web Feature Server

GeoServer has the ability to load data from a remote Web Feature Server (WFS). This is useful if the remote
WFS lacks certain functionality that GeoServer contains. For example, if the remote WFS is not also a Web
Map Server (WMS), data from the WFS can be cascaded through GeoServer to utilize GeoServer’s WMS. If
the remote WFS has a WMS but that WMS cannot output KML, data can be cascaded through GeoServer’s
WMS to output KML.

6.4.1 Adding an external WFS

To connect to an external WFS, it is necessary to load it as a new datastore. To start, navigate to Stores →
Add a new store→Web Feature Server.

Option Description
Workspace Name of the workspace to contain the store. This will also be the prefix of all of

the layer names created from the store.
Data Source Name Name of the store as known to GeoServer.
Description Description of the store.
Enabled Enables the store. If disabled, no data from the external WFS will be served.
GET_CAPABILITIES_URLURL to access the capabilities document of the remote WFS.
PROTOCOL When checked, connects with POST, otherwise uses GET.
USERNAME The user name to connect to the external WFS.
PASSWORD The password associated with the above user name.
ENCODING The character encoding of the XML requests sent to the server. Defaults to UTF-8.
TIMEOUT Time (in milliseconds) before timing out. Default is 3000.
BUFFER_SIZE Specifies a buffer size (in number of features). Default is 10 features.
TRY_GZIP Specifies that the server should transfer data using compressed HTTP if

supported by the server.
LENIENT When checked, will try to render features that don’t match the appropriate

schema. Errors will be logged.
MAXFEATURES Maximum amount of features to retrieve for each featuretype. Default is no limit.

When finished, click Save.

6.4.2 Configuring external WFS layers

When properly loaded, all layers served by the external WFS will be available to GeoServer. Before they can
be served, however, they will need to be individually configured as new layers. See the section on Layers
for how to add and edit new layers.

6.4.3 Connecting to an external WFS layer via a proxy server

In a corporate environment it may be necessary to connect to an external WFS through a proxy server. To
achieve this, various java variables need to be set.

120 Chapter 6. Working with Data

GeoServer User Manual, Release 2.1-RC4

Figure 6.5: Adding an external WFS as a store

6.4. External Web Feature Server 121

GeoServer User Manual, Release 2.1-RC4

For a Windows install running Geoserver as a service, this is done by modifying the wrapper.conf file. For
a default Windows install, modify C:\Program Files\GeoServer x.x.x\wrapper\wrapper.conf
similarly to the following.

Java Additional Parameters

wrapper.java.additional.1=-Djetty.home=. wrapper.java.additional.2=-
DGEOSERVER_DATA_DIR=”%GEOSERVER_DATA_DIR%” wrapper.java.additional.3=-
Dhttp.proxySet=true wrapper.java.additional.4=-Dhttp.proxyHost=maitproxy
wrapper.java.additional.5=-Dhttp.proxyPort=8080 wrapper.java.additional.6=-
Dhttps.proxyHost=maitproxy wrapper.java.additional.7=-Dhttps.proxyPort=8080
wrapper.java.additional.8=-Dhttp.nonProxyHosts=”mait*|dpi*|localhost”

Note that the http.proxySet=true parameter is required. Also, the parameter numbers must be consecutive
- ie. no gaps.

For a Windows install not running Geoserver as a service, modify startup.bat so that the java command
runs with similar -D parameters.

For a Linux/UNIX install, modify startup.sh so that the java command runs with similar -D parameters.

6.5 External Web Map Server

GeoServer has the ability to proxy a remote Web Map Service (WMS). This process is sometimes known as
Cascading WMS. Loading a remote WMS is useful for many reasons. If you don’t manage or have access
to the remote WMS, you can now manage its output as if it were local. Even if the remote WMS is not
GeoServer, you can use GeoServer features to treat its output (watermarking, decoration, printing, etc).

To access a remote WMS, it is necessary to load it as a store in GeoServer. GeoServer must be able to access
the capabilities document of the remote WMS for the store to be successfully loaded.

6.5.1 Adding an external WMS

To connect to an external WMS, it is necessary to load it as a new store. To start, in the Web Administration
Interface, navigate to Stores→ Add a new store→WMS. The option is listed under Other Data Sources.

Figure 6.6: Adding an external WMS as a store

122 Chapter 6. Working with Data

GeoServer User Manual, Release 2.1-RC4

Figure 6.7: Configuring a new external WMS store

6.5. External Web Map Server 123

GeoServer User Manual, Release 2.1-RC4

Option Description
Workspace Name of the workspace to contain the store. This will also be the prefix of all of the layer

names published from the store. The workspace name on the remote WMS is not
cascaded.

Data
Source
Name

Name of the store as known to GeoServer.

Descrip-
tion

Description of the store.

Enabled Enables the store. If disabled, no data from the remote WMS will be served.
Capabili-
ties
URL

The full URL to access the capabilities document of the remote WMS.

When finished, click Save.

6.5.2 Configuring external WMS layers

When properly loaded, all layers served by the external WMS will be available to GeoServer. Before they
can be served, however, they will need to be individually configured (published) as new layers. See the
section on Layers for how to add and edit new layers. Once published, these layers will show up in the
Layer Preview and as part of the WMS capabilities document.

6.5.3 Features

Connecting a remote WMS allows for the following features:

• Dynamic reprojection. While the default projection for a layer is cascaded, it is possible to pass
the SRS parameter through to the remote WMS. Should that SRS not be valid on the remote server,
GeoServer will dynamically reproject the images sent to it from the remote WMS.

• GetFeatureInfo. WMS GetFeatureInfo requests will be passed to the remote WMS. If the remote WMS
supports the application/vnd.ogc.gml format the request will be successful.

• Full REST Configuration. Requires the optional RESTful Configuration extension. See the REST Con-
figuration API Reference for more information about the GeoServer REST interface.

6.5.4 Limitations

Layers served through an external WMS have some, but not all of the functionality of a local WMS.

• Layers cannot be styled with SLD.

• Alternate (local) styles cannot be used.

• Extra request parameters (time, elevation, cql_filter, etc.) cannot be used.

• GetLegendGraphic requests aren’t supported.

• Image format cannot be specified. GeoServer will attempt to request PNG images, and if that fails
will use the remote server’s default image format.

• Authentication for the remote WMS isn’t supported. The remote WMS must be unsecured.

124 Chapter 6. Working with Data

GeoServer User Manual, Release 2.1-RC4

6.6 Java Properties

The Properties data store provides access to one or more feature types (layers) stored in Java property
files; these are plain text files stored on the local filesystem. The Properties data store was never intended
to be shipped with GeoServer. It originated in a GeoTools tutorial, and later found widespread use by
developers in automated tests that required a convenient store for small snippets of data. It slipped into
GeoServer through the completeness of the packaging process, and was automatically detected and offered
to users via the web interface. The Property data store has proved useful in tutorials and examples.

• We do not recommend the use the Properties data store for large amounts of data, with either many
features or large geometries. Its performance will be terrible.

• For small data sets, such as collections of a few dozen points, you may find it to be satisfactory. For
example, if you have a few points you wish to add as an extra layer, and no convenient database in
which store them, the Properties data store provides a straightforward means of delivering them.

• Changes to a property file are immediately reflected in GeoServer responses. There is no need to
recreate the data store unless the first line of a property file is changed, or property files are added or
removed.

6.6.1 Adding a Properties data store

By default, Properties will be an option in the Vector Data Sources list when creating a new data store.

Figure 6.8: Properties in the list of vector data stores

6.6.2 Configuring a Properties data store

Option Description
Workspace Sets the namespace prefix of the feature types (layers) and their properties
Data Source
Name

Unique identifier to distinguish this data store

Description Optional text giving a verbose description of the data store
Enabled Features will be delivered only if this option is checked
directory Filesystem path to a directory containing one or more property files, for example

/usr/local/geoserver/data/ex

Every property file TYPENAME.properties in the designated directory is served as a feature type
TYPENAME (the name of the file without the .properties), in the namespace of the data store.

Before a feature type (layer) can be used, you must edit it to ensure that its bounding box and other metadata
is configured.

6.6.3 Property file format

The property file format is a subset of the Java properties format: a list of lines of the form KEY=VALUE.

6.6. Java Properties 125

GeoServer User Manual, Release 2.1-RC4

Figure 6.9: Configuring a Properties data store

126 Chapter 6. Working with Data

GeoServer User Manual, Release 2.1-RC4

This example stations.properties defines four features of the feature type (layer) stations:

_=id:Integer,code:String,name:String,location:Geometry:srid=4326
stations.27=27|ALIC|Alice Springs|POINT(133.8855 -23.6701)
stations.4=4|NORF|Norfolk Island|POINT(167.9388 -29.0434)
stations.12=12|COCO|Cocos|POINT(96.8339 -12.1883)
stations.31=31|ALBY|Albany|POINT(117.8102 -34.9502)

• Blank lines are not permitted anywhere in the file.

• The first line of the property file begins with _= and defines the type information required to interpret
the following lines.

– Comma separated values are of the form NAME:TYPE

– Names are the property name that are used to encode the property in WFS responses.

– Types include Integer, String, Float, and Geometry

– Geometry can have an extra suffix :srid=XXXX that defines the Spatial Reference System by its
numeric EPSG code. Note that geometries defined in this way are in longitude/latitude order.

• Subsequent lines define features, one per line.

– The key before the = is the feature ID (fid or gml:id in WFS responses). Each must be an
NCName.

– Feature data follows the = separated by vertical bars (|). The types of the data must match the
declaration on the first line.

– Leave a field empty if you want it to be null; in this case the property will be ignored.

Note that in this example srid=4326 sets the spatial reference system (SRS) to EPSG:4326, which is
by convention in longitude/latitude order when referred to in the short form. If you request these fea-
tures in GML 3 you will see that GeoServer correctly translates the geometry to the URN form SRS
urn:x-ogc:def:crs:EPSG:4326 in latitude/longitude form. See the WFS page for more on SRS axis
order options.

6.7 ArcGrid

ArcGrid is a coverage file format created by ESRI.

6.7.1 Adding an ArcGrid data store

By default, ArcGrid will be an option in the Raster Data Sources list when creating a new data store.

Figure 6.10: ArcGrid in the list of raster data stores

6.7. ArcGrid 127

http://www.w3.org/TR/1999/REC-xml-names-19990114/#NT-NCName

GeoServer User Manual, Release 2.1-RC4

6.7.2 Configuring a ArcGrid data store

Option Description
Workspace
Data Source Name
Description
Enabled
URL

6.8 GeoTIFF

A GeoTIFF is a georeferenced TIFF (Tagged Image File Format) file.

6.8.1 Adding a GeoTIFF data store

By default, GeoTIFF will be an option in the Raster Data Sources list when creating a new data store.

6.8.2 Configuring a GeoTIFF data store

Option Description
Workspace
Data Source Name
Description
Enabled
URL

6.9 GTOPO30

GTOPO30 is a Digital Elevation Model (DEM) dataset with a horizontal grid spacing of 30 arc seconds.

Note: An example of a GTOPO30 can be found at http://edc.usgs.gov/products/elevation/gtopo30/gtopo30.html

6.9.1 Adding a GTOPO30 data store

By default, GTOPO30 will be an option in the Raster Data Sources list when creating a new data store.

6.9.2 Configuring a GTOPO30 data store

Option Description
Workspace
Data Source Name
Description
Enabled
URL

128 Chapter 6. Working with Data

http://edc.usgs.gov/products/elevation/gtopo30/gtopo30.html

GeoServer User Manual, Release 2.1-RC4

Figure 6.11: Configuring an ArcGrid data store

Figure 6.12: GeoTIFF in the list of raster data stores

6.9. GTOPO30 129

GeoServer User Manual, Release 2.1-RC4

Figure 6.13: Configuring a GeoTIFF data store

Figure 6.14: GTOPO30 in the list of raster data stores

130 Chapter 6. Working with Data

GeoServer User Manual, Release 2.1-RC4

Figure 6.15: Configuring a GTOPO30 data store

6.9. GTOPO30 131

GeoServer User Manual, Release 2.1-RC4

6.10 ImageMosaic

The ImageMosaic data store allows the creation of a mosaic from a number of georeferenced rasters. The
plugin can be used with GeoTIFFs, as well as rasters accompanied by a world file (.pgw for PNG files,
.jgw for JPG files, etc.).

The “Mosaic” operation creates a mosaic of two or more source images. This operation could be used for
example to assemble a set of overlapping geospatially rectified images into a contiguous image. It could
also be used to create a montage of photographs such as a panorama.

The best current source of information on configuring an ImageMosiac is the tutorial: Using the ImageMosaic
plugin.

6.10.1 Adding an ImageMosaic data store

By default, ImageMosaic will be an option in the Raster Data Sources list when creating a new data store.

Figure 6.16: ImageMosaic in the list of raster data stores

6.10.2 Configuring an ImageMosaic data store

Option Description
Workspace
Data Source Name
Description
Enabled
URL

6.11 WorldImage

A world file is a plain text file used to georeference raster map images. This file (often with an extension
of .jgw or .tfw) accompanies an associated image file (.jpg or .tif). Together, the world file and the
corresponding image file is known as a WorldImage in GeoServer.

6.11.1 Adding a WorldImage data store

By default, WorldImage will be an option in the Raster Data Sources list when creating a new data store.

132 Chapter 6. Working with Data

GeoServer User Manual, Release 2.1-RC4

Figure 6.17: Configuring an ImageMosaic data store

Figure 6.18: WorldImage in the list of raster data stores

6.11. WorldImage 133

GeoServer User Manual, Release 2.1-RC4

Figure 6.19: Configuring a WorldImage data store

134 Chapter 6. Working with Data

GeoServer User Manual, Release 2.1-RC4

6.11.2 Configuring a WorldImage data store

Option Description
Workspace
Data Source Name
Description
Enabled
URL

6.12 ArcSDE

Note: ArcSDE support is not enabled by default and requires the ArcSDE extension to be installed prior to
use. Please see the section on Installing the ArcSDE extension for details.

ESRI’s ArcSDE is a spatial engine that runs on top of a relational database such as Oracle or SQL Server.
GeoServer with the ArcSDE extension supports ArcSDE versions 9.2 and 9.3. It has been tested with Oracle
10g and Microsoft SQL Server 2000 Developer Edition. The ArcSDE extension is based on the GeoTools
ArcSDE driver and uses the ESRI Java API libraries. See the GeoTools ArcSDE page for more technical
details.

There are two types of ArcSDE data that can be added to GeoServer: vector and raster.

6.12.1 Vector support

ArcSDE provides efficient access to vector layers, (“featureclasses” in ArcSDE jargon), over a number of
relational databases. GeoServer can set up featuretypes for registered ArcSDE featureclasses and spatial
views. For versioned ArcSDE featureclasses, GeoServer will work on the default database version, for both
read and write access.

Transactional support is enabled for featureclasses with a properly set primary key, regardless if the fea-
tureclass is managed by a user or by ArcSDE. If a featureclass has no primary key set, it will be available as
read-only.

6.12.2 Raster support

ArcSDE provides efficient access to multi-band rasters by storing the raw raster data as database blobs,
dividing it into tiles and creating a pyramid. It also allows a compression method to be set for the tiled blob
data and an interpolation method for the pyramid resampling.

All the bands comprising a single ArcSDE raster layer must have the same pixel depth, which can be one
of 1, 4, 8, 16, and 32 bits per sample for integral data types. For 8, 16 and 32 bit bands, they may be signed
or unsigned. 32 and 64 bit floating point sample types are also supported.

ArcSDE rasters may also be color mapped, as long as the raster has a single band of data typed 8 or 16 bit
unsigned.

Finally, ArcSDE supports raster catalogs. A raster catalog is a mosaic of rasters with the same spectral
properties but instead of the mosaic being precomputed, the rasters comprising the catalog are independent
and the mosaic work performed by the application at runtime.

6.12. ArcSDE 135

http://www.esri.com/software/arcgis/arcsde/
http://docs.codehaus.org/display/GEOTDOC/ArcSDE+DataStore

GeoServer User Manual, Release 2.1-RC4

Technical Detail Status
Compression methods LZW, JPEG
Number of bands Any number of bands except for 1 and 4 bit rasters (supported for

single-band only).
Bit depth for color-mapped
rasters

8 bit and 16 bit

Raster Catalogs Any pixel storage type

6.12.3 Installing the ArcSDE extension

Warning: Due to licensing requirements, not all files are included with the extension. To install ArcSDE
support, it is necessary to download additional files. Just installing the ArcSDE extension will have
no effect.

GeoServer files

1. Download the ArcSDE extension from the GeoServer download page.

Warning: Make sure to match the version of the extension to the version of the GeoServer in-
stance!

2. Extract the contents of the archive into the WEB-INF/lib directory of the GeoServer installation.

Required external files

There are two files that are required but are not packaged with the GeoServer extension:

File Notes
jsde_sdk.jarAlso known as jsde##_sdk.jar where ## is the version number, such as 92 for

ArcSDE version 9.2
jpe_sdk.jar Also known as jpe##_sdk.jar where ## is the version number, such as 92 for

ArcSDE version 9.2

You should always make sure the jsde_sdk.jar and jpe_sdk.jar versions match your ArcSDE server
version, including service pack, although client jar versions higher than the ArcSDE Server version usually
work just fine.

These two files are available on your installation of the ArcSDE Java SDK from the ArcSDE insatallation me-
dia (usually C:\Program Files\ArcGIS\ArcSDE\lib). They may also be available on ESRI’s website
if there’s a service pack containing them, but this is not guaranteed. To download these files from ESRI’s
website:

1. Navigate to http://support.esri.com/index.cfm?fa=downloads.patchesServicePacks.listPatches&PID=66

2. Find the link to the latest service pack for your version of ArcSDE

3. Scroll down to Installing this Service Pack→ ArcSDE SDK→ UNIX (regardless of your target OS)

4. Download any of the target files (but be sure to match 32/64 bit to your OS)

5. Open the archive, and extract the appropriate JARs.

136 Chapter 6. Working with Data

http://geoserver.org/display/GEOS/Download
http://support.esri.com/index.cfm?fa=downloads.patchesServicePacks.listPatches\&PID=66

GeoServer User Manual, Release 2.1-RC4

Note: The JAR files may be in a nested archive inside this archive.

Note: The icu4j##.jar may also be on your ArcSDE Java SDK installation folder, but it is already
included as part of the the GeoServer ArcSDE extension and is not necessary to install separately.

1. When downloaded, copy the two files to the WEB-INF/lib directory of the GeoServer installation.

After all GeoServer files and external files have been downloaded and copied, restart GeoServer.

6.12.4 Adding an ArcSDE vector data store

In order to serve vector data layers, it is first necessary to register the ArcSDE instance as a data store in
GeoServer. Navigate to the New data source page, accessed from the Stores page in the Web Administration
Interface. and an option for ArcSDE will be in the list of Vector Data Stores.

Note: If ArcSDE is not an option in the Feature Data Set Description drop down box, the extension is not
properly installed. Please see the section on Installing the ArcSDE extension.

Figure 6.20: ArcSDE in the list of data sources

6.12.5 Configuring an ArcSDE vector data store

The next page contains configuration options for the ArcSDE vector data store. Fill out the form, then click
Save.

Option Re-
quired?

Description

Feature Data
Set ID

N/A The name of the data store as set on the previous page.

Enabled N/A When this box is checked the data store will be available to GeoServer
Namespace Yes The namespace associated with the data store.
Description No A description of the data store.
server Yes The URL of the ArcSDE instance.
port Yes The port that the ArcSDE instance is set to listen to. Default is 5151.
instance No The name of the specific ArcSDE instance, where applicable, depending

on the underlying database.
user Yes The username to authenticate with the ArcSDE instance.
password No The password associated with the above username for authentication

with the ArcSDE instance.
pool.minConnectionsNo Connection pool configuration parameters. See the Database Connection

Pooling section for details.
pool.maxConnectionsNo Connection pool configuration parameters. See the Database Connection

Pooling section for details.
pool.timeOut No Connection pool configuration parameters. See the Database Connection

Pooling section for details.

6.12. ArcSDE 137

GeoServer User Manual, Release 2.1-RC4

Figure 6.21: Configuring a new ArcSDE data store

138 Chapter 6. Working with Data

GeoServer User Manual, Release 2.1-RC4

You may now add featuretypes as you would normally do, by navigating to the New Layer page, accessed
from the Layers page in the Web Administration Interface.

6.12.6 Adding an ArcSDE vector data store with JNDI

6.12.7 Configuring an ArcSDE vector data store with JNDI

6.12.8 Adding an ArcSDE raster coveragestore

In order to serve raster layers (or coverages), it is first necessary to register the ArcSDE instance as a store
in GeoServer. Navigate to the Add new store page, accessed from the Stores page in the Web Administration
Interface and an option for ArcSDE Raster Format will be in list.

Note: If ArcSDE Raster Format is not an option in the Coverage Data Set Description drop down box,
the extension is not properly installed. Please see the section on Installing the ArcSDE extension.

Figure 6.22: ArcSDE Raster in the list of data sources

6.12.9 Configuring an ArcSDE raster coveragestore

The next page contains configuration options for the ArcSDE instance. Fill out the form, then click Save.

Option Re-
quired?

Description

Coverage Data
Set ID

N/A The name of the coveragestore as set on the previous page.

Enabled N/A When this box is checked the coveragestore will be available to
GeoServer.

Namespace Yes The namespace associated with the coveragestore.
Type No The type of coveragestore. Leave this to say ArcSDE Raster.
URL Yes The URL of the raster, of the form

sde://<user>:<pwd>@<server>/#<tableName>.
Description No A description of the coveragestore.

You may now add coverages as you would normally do, by navigating to the Add new layer page, accessed
from the Layers page in the Web Administration Interface.

6.13 GML

Note: GeoServer does not come built-in with support for GML; it must be installed through an extension.
Proceed to Installing the GML extension for installation details.

Warning: Currently the GML extension is unmaintained and carries unsupported status. While still
usable, do not expect the same reliability as with other extension.

6.13. GML 139

GeoServer User Manual, Release 2.1-RC4

Figure 6.23: Configuring a new ArcSDE coveragestore

140 Chapter 6. Working with Data

GeoServer User Manual, Release 2.1-RC4

Geographic Markup Language (GML) is a XML based format for representing vector based spatial data.

6.13.1 Supported versions

Currently GML version 2 is supported.

6.13.2 Installing the GML extension

1. Download the GML extension from the GeoServer download page.

Warning: Make sure to match the version of the extension to the version of the GeoServer in-
stance!

2. Extract the contents of the archive into the WEB-INF/lib directory of the GeoServer installation.

6.13.3 Adding a GML data store

Once the extension is properly installed GML will be an option in the Vector Data Sources list when creat-
ing a new data store.

Figure 6.24: GML in the list of vector data stores

6.13.4 Configuring a GML data store

6.14 DB2

Note: GeoServer does not come built-in with support for DB2; it must be installed through an extension.
Proceed to Installing the DB2 extension for installation details.

The IBM DB2 UDB database is a commercial relational database implementing ISO SQL standards and is
similar in functionality to Oracle, SQL Server, MySQL, and PostgreSQL. The DB2 Spatial Extender is a no-
charge licensed feature of DB2 UDB which implements the OGC specification “Simple Features for SQL
using types and functions” and the ISO “SQL/MM Part 3 Spatial” standard.

A trial copy of DB2 UDB and Spatial Extender can be downloaded from: http://www-
306.ibm.com/software/data/db2/udb/edition-pde.html . There is also an “Express-C” version of DB2,
that is free, comes with spatial support, and has no limits on size. It can be found at: http://www-
306.ibm.com/software/data/db2/express/download.html

6.14. DB2 141

http://geoserver.org/display/GEOS/Download
http://www-306.ibm.com/software/data/db2/udb/edition-pde.html
http://www-306.ibm.com/software/data/db2/udb/edition-pde.html
http://www-306.ibm.com/software/data/db2/express/download.html
http://www-306.ibm.com/software/data/db2/express/download.html

GeoServer User Manual, Release 2.1-RC4

Figure 6.25: Configuring a GML data store

142 Chapter 6. Working with Data

GeoServer User Manual, Release 2.1-RC4

6.14.1 Installing the DB2 extension

Warning: Due to licensing requirements, not all files are included with the extension. To install DB2
support, it is necessary to download additional files. Just installing the DB2 extension will have no
effect.

GeoServer files

1. Download the DB2 extension from the GeoServer download page.

Warning: Make sure to match the version of the extension to the version of the GeoServer in-
stance!

2. Extract the contents of the archive into the WEB-INF/lib directory of the GeoServer installation.

Required external files

There are two files that are required but are not packaged with the GeoServer extension: db2jcc.jar
and db2jcc_license_cu.jar. These files should be available in the java subdirectory of your DB2
installation directory. Copy these files to the WEB-INF/lib directory of the GeoServer installation.

After all GeoServer files and external files have been downloaded and copied, restart GeoServer.

6.14.2 Adding a DB2 data store

When properly installed, DB2 will be an option in the Vector Data Sources list when creating a new data
store.

Figure 6.26: DB2 in the list of raster data stores

6.14.3 Configuring a DB2 data store

6.14.4 Configuring a DB2 data store with JNDI

6.14.5 Notes on usage

DB2 schema, table, and column names are all case-sensitive when working with GeoTools/GeoServer.
When working with DB2 scripts and the DB2 command window, the default is to treat these names as
upper-case unless enclosed in double-quote characters.

6.14. DB2 143

http://geoserver.org/display/GEOS/Download

GeoServer User Manual, Release 2.1-RC4

Figure 6.27: Configuring a DB2 data store

144 Chapter 6. Working with Data

GeoServer User Manual, Release 2.1-RC4

6.15 H2

Note: GeoServer does not come built-in with support for H2; it must be installed through an extension.
Proceed to Installing the H2 extension for installation details.

6.15.1 Installing the H2 extension

1. Download the H2 extension from the GeoServer download page.

Warning: Make sure to match the version of the extension to the version of the GeoServer in-
stance!

2. Extract the contents of the archive into the WEB-INF/lib directory of the GeoServer installation.

6.15.2 Adding an H2 data store

Once the extension is properly installed H2 will be an option in the Vector Data Sources list when creating
a new data store.

Figure 6.28: H2 in the list of vector data stores

6.15.3 Configuring an H2 data store

6.15.4 Configuring an H2 data store with JNDI

6.16 MySQL

Note: GeoServer does not come built-in with support for MySQL; it must be installed through an extension.
Proceed to Installing the MySQL extension for installation details.

Warning: Currently the MySQL extension is unmaintained and carries unsupported status. While still
usable, do not expect the same reliability as with other extensions.

MySQL is an open source relational database with some limited spatial functionality.

6.15. H2 145

http://geoserver.org/display/GEOS/Download
http://www.mysql.com

GeoServer User Manual, Release 2.1-RC4

Figure 6.29: Configuring an H2 data store

146 Chapter 6. Working with Data

GeoServer User Manual, Release 2.1-RC4

6.16.1 Installing the MySQL extension

1. Download the MySQL extension from the GeoServer download page.

Warning: Make sure to match the version of the extension to the version of the GeoServer in-
stance!

2. Extract the contents of the archive into the WEB-INF/lib directory of the GeoServer installation.

6.16.2 Adding a MySQL database

Once the extension is properly installed MySQL will show up as an option when creating a new data store.

Figure 6.30: MySQL in the list of data sources

6.16.3 Configuring a MySQL data store

host The mysql server host name or ip address.
port The port on which the mysql server is accepting

connections.
database The name of the database to connect to.
user The name of the user to connect to the mysql database as.
password The password to use when connecting to the database.

Left blank for no password.
max connections
min connections
validate connections

Connection pool configuration parameters. See the
Database Connection Pooling section for details.

6.17 Pregeneralized Features

Note: GeoServer does not come built-in with support for Pregeneralized Features; it must be installed
through an extension.

6.17.1 Installing the Pregeneralized Features extension

1. Download the Pregeneralized Features extension from the GeoServer download page.

Warning: Make sure to match the version of the extension to the version of the GeoServer in-
stance!

2. Extract the contents of the archive into the WEB-INF/lib directory of the GeoServer installation.

6.17. Pregeneralized Features 147

http://geoserver.org/display/GEOS/Download
http://geoserver.org/display/GEOS/Download

GeoServer User Manual, Release 2.1-RC4

Figure 6.31: Configuring a MySQL data store

148 Chapter 6. Working with Data

GeoServer User Manual, Release 2.1-RC4

6.17.2 Adding a Pregeneralized Features data store

If the extension is properly installed, Generalized Data Store will be listed as an option when creating a
new data store.

Figure 6.32: Generalized Data Store in the list of vector data stores

6.17.3 Configuring a Pregeneralized Features data store

For a detailed description, look at the Tutorial

6.18 Oracle

Note: GeoServer does not come built-in with support for Oracle; it must be installed through an extension.
Proceed to Installing the Oracle extension for installation details.

Oracle Spatial and Locator are the spatial extensions of Oracle.

6.18.1 Installing the Oracle extension

1. Download the Oracle extension from the GeoServer download page.

Warning: Make sure to match the version of the extension to the version of the GeoServer in-
stance!

2. Extract the contents of the archive into the WEB-INF/lib directory of he GeoServer installation.

6.18.2 Adding an Oracle datastore

Once the extension is properly installed Oracle will be an option in the Vector Data Sources list when
creating a new data store.

6.18. Oracle 149

http://www.oracle.com/technology/products/spatial/index.html
http://geoserver.org/display/GEOS/Download

GeoServer User Manual, Release 2.1-RC4

Figure 6.33: Configuring a Pregeneralized Features data store

150 Chapter 6. Working with Data

GeoServer User Manual, Release 2.1-RC4

Figure 6.34: Oracle in the list of data sources

6.18.3 Configuring an Oracle datastore

Option Description
host The oracle server host name or IP address.
port The port on which the Oracle server is accepting

connections - often this is port 1521.
database The name of the database to connect to.
schema The database schema to access tables from. Setting this

value greatly increases the speed at which the data store
displays its publishable tables and views, so it is advisable
to set this.

user The name of the user to use when connecting to the oracle
database.

password The password to use when connecting to the database.
Leave blank for no password.

max connections min connections
fetch size connection timeout
validate connections

Connection pool configuration parameters. See the
Database Connection Pooling section for details.

Loose bbox Controls how bounding box comparisons are made against
geometries in the database. See the Using loose bounding
box section below.

Using loose bounding box

When the loose bbox option is set, only the bounding box of a geometry is used. This results in a signifi-
cant performance gain. The downside is that some geometries may be considered inside of a bounding box
when they are technically not.

If the primary use of the database is through Web Map Service this flag can be set safely since a loss of some
accuracy is usually acceptable. However if using Web Feature Service and making use of BBOX filtering
capabilities, this flag should not be set.

6.18.4 Configuring an Oracle database with JNDI

See Setting up a JNDI connection pool with Tomcat for a step by step guide on setting up an Oracle JDNI
connection.

6.19 Microsoft SQL Server

Note: GeoServer does not come built-in with support for SQL Server; it must be installed through an
extension. Proceed to Installing the SQL Server extension for installation details.

6.19. Microsoft SQL Server 151

GeoServer User Manual, Release 2.1-RC4

Figure 6.35: Configuring an Oracle datastore

152 Chapter 6. Working with Data

GeoServer User Manual, Release 2.1-RC4

Microsoft’s SQL Server is a relational database with spatial functionality.

6.19.1 Supported versions

The extension supports SQL Server 2008.

6.19.2 Installing the SQL Server extension

Warning: Due to licensing requirements, not all files are included with the extension. To install SQL
Server support, it is necessary to download additional files.

GeoServer files

1. Download the SQL Server extension from the GeoServer download page.

Warning: Make sure to match the version of the extension to the version of the GeoServer in-
stance!

2. Extract the contents of the archive into the WEB-INF/lib directory of the GeoServer installation.

Microsoft files

1. Navigate to Microsoft’s JDBC driver download page.

2. Download using the Download SQL Server JDBC Driver 3.0 link.

3. Accept the license and download the appropriate archive for your operating system.

4. Extract the contents of the archive

5. Copy the file sqljdbc4.jar to the WEB-INF/lib directory of the GeoServer installation.

6. For GeoServer installed on Windows, copy \x86\sqljdbc_auth.dll and
\x86\sqljdbc_xa.dll to C:\Windows\System32

6.19.3 Adding a SQL Server database

Once the extension is properly installed SQL Server will show up as an option when creating a new data
store.

Figure 6.36: SQL Server in the list of vector data sources

6.19. Microsoft SQL Server 153

http://www.microsoft.com/sqlserver/2008
http://geoserver.org/display/GEOS/Download
http://msdn.microsoft.com/en-us/data/aa937724.aspx

GeoServer User Manual, Release 2.1-RC4

6.19.4 Configuring a SQL Server data store

host The sql server instance host name or ip address, only. Note that
server\instance notation is not accepted - specify the port below, instead,
if you have a non-default instance.

port The port on which the SQL server instance is accepting connections. See the
note below.

database The name of the database to connect to.
schema The database schema to access tables from (optional).
user The name of the user to connect to the oracle database as.
password The password to use when connecting to the database. Leave blank for no

password.
max connections
min connections

Connection pool configuration parameters. See the Database Connection Pooling
section for details.

Determining the port used by the SQL Server instance

You can determine the port in use by connecting to your SQL server instance using some other software,
and then using netstat to display details on network connections. In the following example on a Windows
PC, the port is 2646 ..

C:\>netstat -a | find "sql1"
TCP DPI908194:1918 maittestsql1.dpi.nsw.gov.au:2646 ESTABLISHED

6.19.5 Adding a SQL Server database with JNDI

6.19.6 Configuring a SQL Server database with JNDI

6.20 VPF

Note: GeoServer does not come built-in with support for VPF; it must be installed through an extension.
Proceed to Installing the VPF extension for installation details.

Vector Product Format (VPF) is a military standard for vector-based digital map products produced by the
U.S. Department of Defense. For more information visit The National Geospatial-Intelligence Agency.

6.20.1 Installing the VPF extension

1. Download the VPF extension from the GeoServer download page.

Warning: Make sure to match the version of the extension to the version of the GeoServer in-
stance!

2. Extract the contents of the archive into the WEB-INF/lib directory of the GeoServer installation.

6.20.2 Adding a VPF file

Once the extension is properly installed Vector Product Format Library will be an option in the Vector Data
Sources list when creating a new data store.

154 Chapter 6. Working with Data

http://www.nga.mil/portal/site/nga01/index.jsp?epi-content=GENERIC\&itemID=a2986591e1b3af00VgnVCMServer23727a95RCRD\&beanID=1629630080\&viewID=Article
http://geoserver.org/display/GEOS/Download

GeoServer User Manual, Release 2.1-RC4

Figure 6.37: Configuring a SQL Server data store

6.20. VPF 155

GeoServer User Manual, Release 2.1-RC4

Figure 6.38: VPF in the list of new data sources

6.20.3 Configuring a VPF data store

6.21 GDAL Image Formats

GeoServer can leverage the ImageIO-ext GDAL libraries to read selected coverage formats. GDAL is able to
read many formats, but for the moment GeoServer supports only a few general interest formats and those
that can be legally redistributed and operated in an open source server.

The following image formats can be read by GeoServer using GDAL:

• DTED, Military Elevation Data (.dt0, .dt1, .dt2): http://www.gdal.org/frmt_dted.html

• EHdr, ESRI .hdr Labelled: <http://www.gdal.org/frmt_various.html#EHdr>

• ENVI, ENVI .hdr Labelled Raster: <http://www.gdal.org/frmt_various.html#ENVI>

• HFA, Erdas Imagine (.img): <http://www.gdal.org/frmt_hfa.html>

• JP2MrSID, JPEG2000 (.jp2, .j2k): <http://www.gdal.org/frmt_jp2mrsid.html>

• MrSID, Multi-resolution Seamless Image Database: <http://www.gdal.org/frmt_mrsid.html>

• NITF: <http://www.gdal.org/frmt_nitf.html>

• ECW, ERDAS Compressed Wavelets (.ecw): <http://www.gdal.org/frmt_ecw.html>

• JP2ECW, JPEG2000 (.jp2, .j2k): http://www.gdal.org/frmt_jpeg2000.html

• AIG, Arc/Info Binary Grid: <http://www.gdal.org/frmt_various.html#AIG>

• JP2KAK, JPEG2000 (.jp2, .j2k): <http://www.gdal.org/frmt_jp2kak.html>

6.21.1 Installing GDAL

GDAL is not a standard GeoServer extension, as the GDAL library files are built into GeoServer by default.
However, in order for GeoServer to leverage these libraries, the GDAL (binary) program itself must be
installed through your host system’s OS. Once this program is installed, GeoServer will be able to recognize
GDAL data types. In order to install the GDAL Native libraries:

1. Navigate to the imageio-ext document and files download page.

2. Select the most recent stable binary release.

3. Select “native libraries”.

4. Download and extract/install the correct version for your OS.

Note: If you are on Windows, make sure that the GDAL DLL files are on your PATH. If you are on
Linux, be sure to set the LD_LIBRARY_PATH environment variable to be the folder where the SOs
are extracted.

5. Select “libraries” from the last stable release root.

156 Chapter 6. Working with Data

https://imageio-ext.dev.java.net
http://www.gdal.org
http://www.gdal.org/frmt_dted.html
http://www.gdal.org/frmt_various.html#EHdr
http://www.gdal.org/frmt_various.html#ENVI
http://www.gdal.org/frmt_hfa.html
http://www.gdal.org/frmt_jp2mrsid.html
http://www.gdal.org/frmt_mrsid.html
http://www.gdal.org/frmt_nitf.html
http://www.gdal.org/frmt_ecw.html
http://www.gdal.org/frmt_jpeg2000.html
http://www.gdal.org/frmt_various.html#AIG
http://www.gdal.org/frmt_jp2kak.html
http://java.net/projects/imageio-ext/downloads

GeoServer User Manual, Release 2.1-RC4

Figure 6.39: Configuring a VPF data store

6.21. GDAL Image Formats 157

GeoServer User Manual, Release 2.1-RC4

6. Download and extract the gdal_data-1.X.X archive.

Note: Make sure to set a GDAL_DATA environment variable to the folder where you have extracted
this file.

Once these steps have been completed, restart GeoServer. If done correctly, new data formats will be in the
Raster Data Sources list when creating a new data store.

Figure 6.40: GDAL image formats in the list of raster data stores

6.21.2 Note on running GeoServer as a Service on Windows

Simply deploying the GDAL ImageI/O-Ext native libraries in a location referred by the PATH environment
variable (like, as an instance, the JDK/bin folder) doesn’t allow GeoServer to leverage on GDAL, when run
as a service. As a result, during the service startup, GeoServer log reports this worrysome message:

it.geosolutions.imageio.gdalframework.GDALUtilities loadGDAL WARNING: Native library load
failed.java.lang.UnsatisfiedLinkError: no gdaljni in java.library.path

Taking a look at the wrapper.conf configuration file available inside the GeoServer installation (at
bin/wrapper/wrapper.conf), there is this useful entry:

Java Library Path (location of Wrapper.DLL or libwrapper.so) wrap-
per.java.library.path.1=bin/wrapper/lib

To allow the GDAL native DLLs getting loaded, you have 2 possible ways:

1. Move the native DLLs on the referred path (bin/wrapper/lib)

2. Add a wrapper.java.library.path.2=path/where/you/deployed/nativelibs entry just after the wrap-
per.java.library.path1=bin/wrapper/lib line.

158 Chapter 6. Working with Data

GeoServer User Manual, Release 2.1-RC4

Figure 6.41: Configuring a DTED data store

6.21. GDAL Image Formats 159

GeoServer User Manual, Release 2.1-RC4

Figure 6.42: Configuring a EHdr data store

160 Chapter 6. Working with Data

GeoServer User Manual, Release 2.1-RC4

6.21.3 Adding support for ECW and Kakadu

6.21.4 Configuring a DTED data store

6.21.5 Configuring a EHdr data store

6.21.6 Configuring a ERDASImg data store

Figure 6.43: Configuring a ERDASImg data store

6.21. GDAL Image Formats 161

GeoServer User Manual, Release 2.1-RC4

6.21.7 Configuring a JP2MrSID data store

6.21.8 Configuring a NITF data store

6.22 ImagePyramid

Note: GeoServer does not come built-in with support for Image Pyramid; it must be installed through an
extension. Proceed to Installing the ImagePyramid extension for installation details.

An image pyramid is several layers of an image rendered at various image sizes, to be shown at different
zoom levels.

6.22.1 Installing the ImagePyramid extension

1. Download the ImagePyramid extension from the GeoServer download page.

Warning: Make sure to match the version of the extension to the version of the GeoServer in-
stance!

2. Extract the contents of the archive into the WEB-INF/lib directory of the GeoServer installation.

6.22.2 Adding an ImagePyramid data store

Once the extension is properly installed ImagePyramid will be an option in the Raster Data Sources list
when creating a new data store.

6.22.3 Configuring an ImagePyramid data store

Option Description
Workspace
Data Source Name
Description
Enabled
URL

6.23 Image Mosaic JDBC

Note: GeoServer does not come built-in with support for Image Mosaic JDBC; it must be installed through
an extension. Proceed to Installing the JDBC Image Mosaic extension for installation details.

6.23.1 Installing the JDBC Image Mosaic extension

1. Download the JDBC Image Mosaic extension from the GeoServer download page.

Warning: Make sure to match the version of the extension to the version of the GeoServer in-
stance!

162 Chapter 6. Working with Data

http://geoserver.org/display/GEOS/Download
http://geoserver.org/display/GEOS/Download

GeoServer User Manual, Release 2.1-RC4

Figure 6.44: Configuring a JP2MrSID data store

6.23. Image Mosaic JDBC 163

GeoServer User Manual, Release 2.1-RC4

Figure 6.45: Configuring a NITF data store

Figure 6.46: ImagePyramid in the list of raster data stores

164 Chapter 6. Working with Data

GeoServer User Manual, Release 2.1-RC4

Figure 6.47: Configuring an ImagePyramid data store

6.23. Image Mosaic JDBC 165

GeoServer User Manual, Release 2.1-RC4

2. Extract the contents of the archive into the WEB-INF/lib directory of the GeoServer installation.

6.23.2 Adding an Image Mosaic JDBC data store

Once the extension is properly installed Image Mosaic JDBC will be an option in the Raster Data Sources
list when creating a new data store.

Figure 6.48: Image Mosaic JDBC in the list of vector data stores

6.23.3 Configuring an Image Mosaic JDBC data store

For a detailed description, look at the Tutorial

6.24 Oracle Georaster

Note: GeoServer does not come built-in with support for Oracle Georaster; it must be installed through
an extension. Proceed to Image Mosaic JDBC for installation details. This extension includes the support for
Oracle Georaster.

6.24.1 Adding an Oracle Georaster data store

Read the geotools documentation for Oracle Georaster Support: http://docs.codehaus.org/display/GEOTDOC/Oracle+GeoRaster+Plugin.
After creating the xml config file proceed to the section Configuring GeoServer in the Image Mosaic JDBC
Tutorial

6.25 Custom JDBC Access for image data

Note: GeoServer does not come built-in with support for Custom JDBC Access; it must be installed through
an extension. Proceed to Image Mosaic JDBC for installation details. This extension includes the support for
Custom JDBC Access.

6.25.1 Adding a coverage based on Custom JDBC Access

This extension is targeted to users having a special database layout for storing their image data or use a
special data base extension concerning raster data.

Read the geotools documentation for Custom JDBC Access: http://docs.codehaus.org/display/GEOTDOC/Customized+JDBC+Access+for+images.

After developing the custom plugin, package the classes into a jar file and copy it into the WEB-INF/lib
directory of the geoserver installation.

Create the xml config file and proceed to the section Configuring GeoServer in the Image Mosaic JDBC Tutorial

166 Chapter 6. Working with Data

http://docs.codehaus.org/display/GEOTDOC/Oracle+GeoRaster+Plugin
http://docs.codehaus.org/display/GEOTDOC/Customized+JDBC+Access+for+images

GeoServer User Manual, Release 2.1-RC4

Figure 6.49: Configuring an Image Mosaic JDBC data store

6.25. Custom JDBC Access for image data 167

GeoServer User Manual, Release 2.1-RC4

6.26 Database Connection Pooling

When serving data from a spatial database connection pooling is an important aspect of achieving good per-
formance. When GeoServer serves a request that involves loading data from a database table, a connection
must first be established with the database. This connection comes with a cost as it takes time to set up such
a connection.

The purpose served by a connection pool is to maintain connection to an underlying database between
requests. The benefit of which is that connection setup only need to occur once on the first request. Subse-
quent requests use existing connections and achieve a performance benefit as a result.

Whenever a data store backed by a database is added to GeoServer an internal connection pool is created.
This connection pool is configurable.

6.26.1 Connection pool options

max
connections

The maximum number of connections the pool can hold. When the maximum number of
connections is exceeded, additional requests that require a database connection will be
halted until a connection from the pool becomes available. The maximum number of
connections limits the number of concurrent requests that can be made against the
database.

min
connections

The minimum number of connections the pool will hold. This number of connections is
held even when there are no active requests. When this number of connections is
exceeded due to serving requests additional connections are opened until the pool
reaches its maximum size (described above).

validate
connections

Flag indicating whether connections from the pool should be validated before they are
used. A connection in the pool can become invalid for a number of reasons including
network breakdown, database server timeout, etc.. The benefit of setting this flag is that
an invalid connection will never be used which can prevent client errors. The downside
of setting the flag is that a performance penalty is paid in order to validate connections.

fetch size The number of records read from the database in each network exchange. If set too low
(<50) network latency will affect negatively performance, if set too high it might
consume a significant portion of GeoServer memory and push it towards an Out Of
Memory error. Defaults to 1000.

connection
timeout

Time, in seconds, the connection pool will wait before giving up its attempt to get a new
connection from the database. Defaults to 20 seconds.

6.27 SQL views

The traditional way to use database backed data is to configure either a table or a database view as a new
layer in GeoServer. Starting with GeoServer 2.1.0 the user can also create a new layer by specifying a raw
SQL query, without the need to actually creating a view in the database. The SQL can also be parametrized,
and parameter values passed in along with a WMS or WFS request.

6.27.1 Creating a plain SQL view

In order to create an SQL view the administrator can go into the “create new layer” page. Upon selection
of a database backed store a list of tables and views available for publication will appear, but at the bottom
of if a new link, “create SQL view”, will appear:

Selecting the link will open a new page where the SQL statement can be specified:

168 Chapter 6. Working with Data

GeoServer User Manual, Release 2.1-RC4

6.27. SQL views 169

GeoServer User Manual, Release 2.1-RC4

Note: The query can be any SQL statement that can be validly executed as part of a subquery in the
FROM clauses, that is select * from (<the sql view>) [as] vtable. This is true for most SQL
statements, but specific syntax might be needed to call onto a stored procedure depending on the database.
Also, all the columns returned by the SQL statement must have a name, in some databases aliasing is
required when calling function names

Once a valid SQL statement has been specified press the “refresh” link in the Attributes table to get a list of
the feature type attributes:

GeoServer will do its best to figure out automatically the geometry type and the native srid, but they should
always be double checked and eventually corrected. In particular having the right SRID (spatial reference
id) is key to have spatial queries actually work. In many spatial databases the SRID is equal to the EPSG
code for the specific spatial reference system, but that is not always true (e.g., Oracle has a number of non
EPSG SRID codes).

If stable feature ids are desired for the view’s features one or more column providing a unique identification
for the features should be checked in the “Indentifier” column. Always make sure those attributes generate
a actually unique key, or filtering and WFS clients will mishbehave.

Once the query and the attribute details are set press save and the usual new layer configuration page will
show up. That page will have a link to a SQL view editor at the bottom of the “Data” tab:

Once create the SQL view based layer can be used as any other table backed layer.

170 Chapter 6. Working with Data

GeoServer User Manual, Release 2.1-RC4

6.27.2 Creating a parametric SQL view

Warning: As a rule of thumb use SQL parameter substitution only if the required functionality cannot
be obtained with safer means, such as dynamic filtering (CQL filters) or SLD parameter substitution.
Only use SQL parameters as a last resort, improperly validated parameters can open the door to SQL
injection attacks.

A parametric SQL view is based on a SQL query containing parameters whose values can be dinamically
provided along WMS or WFS requests. A parameter is bound by % signs, can have a default value, and
should always have a validation regular expression.

Here is an example of a SQL query with two parameters, low and high:

The parameters can be manually specified, but GeoServer can figure out the parameter names by itself
when the “Guess parameters from SQL” link is clicked. The result will be a parameter table filled with the
parameter names and some default validation expressions:

In this case query cannot be executed without default values, as select gid, state_name, the_geom
from pgstates where persons between and would be invalid SQL. Moreover, the two parameters
are positive integer numbers, so the validation expression can be adjusted to allow only that kind of input:

6.27. SQL views 171

http://en.wikipedia.org/wiki/SQL_injection
http://en.wikipedia.org/wiki/SQL_injection

GeoServer User Manual, Release 2.1-RC4

Once the default values have been set the “Attributes” refresh link can be used to double check the query,
retrive the attributes and eventually fix the geometry and identifier details. At this point the workflow
proceeds just like with a non parametrized query.

Going to the WMS preview for the popstates layer should result in all the states being dis-
played. The SQL view parameters can now be specified by adding the viewparams parameter in the
GetMap request. viewparams is structured as a set of key/value pairs separated by semicolumns:
viewparams=p1:v1;p2:v2;....

For example, to select all states having more than 20 million inhabintants the following params can be
added to the normal GetMap request: low:20000000

In order to get all the states having between 2 and 5 millions inhabintants the following can be specified
instead: &viewparams=low:2000000;high:5000000

6.27.3 Parameters and validation

A SQL view parameter can be anything, the only rule to follow is that the set of attributes returned by the
view and their types must never change. This in particular means it’s possible to create views containing
wide open parameters allowing to specify full SQL query portions.

For example, select * from pgstates %where%, along with an empty validation regular experssion,
would allow to specify the where clause of the query dynamically. However, that opens a serious risk for
SQL injection attacks unless access to the server is allowed only to trusted parties.

In general it is advised to use SQL parameters with great care and cast a validation regular expression that
only allows for the intended parameter values. The expression should be created to prevent attacks, but
not necessarily to double check the value is the expected type.

For example:

• ^[\d\.\+-eE]+$ will check that the parameter value is composed with valid elements for a floating
point number, eventually in scientific notation, but will not check that the provided value is actually
a valid floating point number

172 Chapter 6. Working with Data

http://en.wikipedia.org/wiki/SQL_injection

GeoServer User Manual, Release 2.1-RC4

• [^;’]+ will check the parameter value does not contain quotes or semicolumn, preventing common
sql injection attacks, without actually imposing much on the parameter value structure

6.27.4 Regular expressions references

Casting the proper validation regular expression is important in terms of security. Regular expressions are
a wide topic that cannot be addressed in a short space. Here is a set of links on the internet to get more
information about this topic:

• The regular expression engine used by GeoServer is the Java built-in one. The Pattern class javadocs
contain the full specification of the allowed syntax.

• This http://www.regular-expressions.info site is fully dedicated to regular expressions, with tutorials
and examples.

• This applet can be used to interactively test a regular expression online.

6.28 Application Schema Support

The application schema support (app-schema) extension provides support for Complex Features in
GeoServer WFS.

Note: You must install the app-schema plugin to use Application Schema Support.

GeoServer provides support for a broad selection of simple feature data stores, including property files,
shapefiles, and JDBC data stores such as PostGIS and Oracle Spatial. The app-schema module takes one or
more of these simple feature data stores and applies a mapping to convert the simple feature types into one
or more complex feature types conforming to a GML application schema.

The app-schema module looks to GeoServer just like any other data store and so can be loaded and used to
service WFS requests. In effect, the app-schema data store is a wrapper or adapter that converts a simple
feature data store into complex features for delivery via WFS. The mapping works both ways, so queries
against properties of complex features are supported.

6.28. Application Schema Support 173

http://java.sun.com/javase/6/docs/api/java/util/regex/Pattern.html
http://www.regular-expressions.info
http://myregexp.com/

GeoServer User Manual, Release 2.1-RC4

Figure 6.50: Three tables in a database are accessed using GeoServer simple feature support and converted into two
complex feature types.

6.28.1 Contents

Complex Features

To understand complex features, and why you would want use them, you first need to know a little about
simple features.

Simple features

A common use of GeoServer WFS is to connect to a data source such as a database and access one or more
tables, where each table is treated as a WFS simple feature type. Simple features contain a list of properties
that each have one piece of simple information such as a string or number. (Special provision is made for
geometry objects, which are treated like single items of simple data.) The Open Geospatial Consortium
(OGC) defines three Simple Feature profiles; SF-0, SF-1, and SF-2. GeoServer simple features are close to
OGC SF-0, the simplest OGC profile.

GeoServer WFS simple features provide a straightforward mapping from a database table or similar struc-
ture to a “flat” XML representation, where every column of the table maps to an XML element that usually
contains no further structure. One reason why GeoServer WFS is so easy to use with simple features is that
the conversion from columns in a database table to XML elements is automatic. The name of each element
is the name of the column, in the namespace of the data store. The name of the feature type defaults to the
name of the table. GeoServer WFS can manufacture an XSD type definition for every simple feature type it
serves. Submit a DescribeFeatureType request to see it.

Benefits of simple features

• Easy to implement

• Fast

• Support queries on properies, including spatial queries on geometries

Drawbacks of simple features

• When GeoServer automatically generates an XSD, the XML format is tied to the database schema.

174 Chapter 6. Working with Data

GeoServer User Manual, Release 2.1-RC4

• To share data with GeoServer simple features, participants must either use the same database schema
or translate between different schemas.

• Even if a community could agree on a single database schema, as more data owners with different
data are added to a community, the number of columns in the table becomes unmanageable.

• Interoperability is difficult because simple features do not allow modification of only part of the
schema.

Simple feature example For example, if we had a database table stations containing information about
GPS stations:

| id | code | name | location |
+----+------+----------------+--------------------------+
| 27 | ALIC | Alice Springs | POINT(133.8855 -23.6701) |
| 4 | NORF | Norfolk Island | POINT(167.9388 -29.0434) |
| 12 | COCO | Cocos | POINT(96.8339 -12.1883) |
| 31 | ALBY | Albany | POINT(117.8102 -34.9502) |

GeoServer would then be able to create the following simple feature WFS response fragment:

<gps:stations gml:id="stations.27">
<gps:code>ALIC</gps:code>
<gps:name>Alice Springs</gps:name>
<gps:location>

<gml:Point srsName="urn:x-ogc:def:crs:EPSG:4326">
<gml:pos>-23.6701 133.8855</gml:pos>

</gml:Point>
</gps:location>

</gps:stations>

• Every row in the table is converted into a feature.

• Every column in the table is converted into an element, which contains the value for that row.

• Every element is in the namespace of the data store.

• Automatic conversions are applied to some special types like geometries, which have internal struc-
ture, and include elements defined in GML.

Complex features

Complex features contain properties that can contain further nested properties to arbitrary depth. In par-
ticular, complex features can contain properties that are other complex features. Complex features can be
used to represent information not as an XML view of a single table, but as a collection of related objects of
different types.

Simple feature Complex feature
Properties are single data item, e.g. text, number,
geometry

Properties can be complex, including complex
features

XML view of a single table Collection of related identifiable objects
Schema automatically generated based on database Schema agreed by community
One large type Multiple different types
Straightforward Richly featured data standards
Interoperability relies on simplicity and
customisation

Interoperability through standardisation

6.28. Application Schema Support 175

GeoServer User Manual, Release 2.1-RC4

Benefits of complex features

• Can define information model as an object-oriented structure, an application schema.

• Information is modelled not as a single table but as a collection of related objects whose associations
and types may vary from feature to feature (polymorphism), permitting rich expression of content.

• By breaking the schema into a collection of independent types, communities need only extend those
types they need to modify. This simplifies governance and permits interoperability between related
communities who can agree on common base types but need not agree on application-specific sub-
types..

Drawbacks of complex features

• More complex to implement

• Complex responses might slower if more database queries are required for each feature.

• Information modelling is required to standardise an application schema. While this is beneficial, it
requires effort from the user community.

Complex feature example Let us return to our stations table and supplement it with a foreign key
gu_id that describes the relationship between the GPS station and the geologic unit to which it is physically
attached:

| id | code | name | location | gu_id |
+----+------+----------------+--------------------------+-------+
| 27 | ALIC | Alice Springs | POINT(133.8855 -23.6701) | 32785 |
| 4 | NORF | Norfolk Island | POINT(167.9388 -29.0434) | 10237 |
| 12 | COCO | Cocos | POINT(96.8339 -12.1883) | 19286 |
| 31 | ALBY | Albany | POINT(117.8102 -34.9502) | 92774 |

The geologic unit is is stored in the table geologicunit:

| gu_id | urn | text |
+-------+---------------------------------------+---------------------+
| 32785 | urn:x-demo:feature:GeologicUnit:32785 | Metamorphic bedrock |
...

The simple features approach would be to join the stations table with the geologicunit table into one
view and then deliver “flat” XML that contained all the properties of both. The complex feature approach
is to deliver the two tables as separate feature types. This allows the relationship between the entities to be
represented while preserving their individual identity.

For example, we could map the GPS station to a sa:SamplingPoint with a gsml:GeologicUnit. The
these types are defined in the following application schemas respectively:

• http://schemas.opengis.net/sampling/1.0.0/sampling.xsd

– Documentation: OGC 07-002r3: http://portal.opengeospatial.org/files/?artifact_id=22467

• http://www.geosciml.org/geosciml/2.0/xsd/geosciml.xsd

– Documentation: http://www.geosciml.org/geosciml/2.0/doc/

The complex feature WFS response fragment could then be encoded as:

176 Chapter 6. Working with Data

http://schemas.opengis.net/sampling/1.0.0/sampling.xsd
http://portal.opengeospatial.org/files/?artifact_id=22467
http://www.geosciml.org/geosciml/2.0/xsd/geosciml.xsd
http://www.geosciml.org/geosciml/2.0/doc/

GeoServer User Manual, Release 2.1-RC4

<sa:SamplingPoint gml:id="stations.27>
<gml:name codeSpace="urn:x-demo:SimpleName">Alice Springs</gml:name>
<gml:name codeSpace="urn:x-demo:IGS:ID">ALIC</gml:name>
<sa:sampledFeature>

<gsml:GeologicUnit gml:id="geologicunit.32785">
<gml:description>Metamorphic bedrock</gml:description>
<gml:name codeSpace="urn:x-demo:Feature">urn:x-demo:feature:GeologicUnit:32785</gml:name>

</gsml:GeologicUnit>
</sa:sampledFeature>
<sa:relatedObservation xlink:href="urn:x-demo:feature:GeologicUnit:32785" />
<sa:position>

<gml:Point srsName="urn:x-ogc:def:crs:EPSG:4326">
<gml:pos>-23.6701 133.8855</gml:pos>

</gml:Point>
</sa:position>

</sa:SamplingPoint>

• The property sa:sampledFeature can reference any other feature type, inline (included in the re-
sponse) or by reference (an xlink:href URL or URN). This is an example of the use of polymor-
phism.

• The property sa:relatedObservation refers to the same GeologicUnit as sa:sampledFeature,
but by reference.

• Derivation of new types provides an extension point, allowing information models to be reused and
extended in a way that supports backwards compatibility.

• Multiple sampling points can share a single GeologicUnit. Application schemas can also define mul-
tivalued properties to support many-to-one or many-to-many associations.

• Each GeologicUnit could have further properties describing in detail the properties of the rock, such
as colour, weathering, lithology, or relevant geologic events.

• The GeologicUnit feature type can be served separately, and could be uniquely identified through its
properties as the same instance seen in the SamplingPoint.

Installation

Application schema support is a GeoServer extension and is downloaded separately.

• Download the app-schema plugin zip file for the same version of GeoServer.

• Unzip the app-schema plugin zip file to obtain the jar files inside. Do not unzip the jar files.

• Place the jar files in the WEB-INF/lib directory of your GeoServer installation.

• Restart GeoServer to load the extension (although you might want to configure it first [see below]).

WFS Service Settings

There are two GeoServer WFS service settings that are strongly recommended for interoperable complex
feature services. These can be enabled through the Services→WFS page on the GeoServer web interface or
by manually editing the wfs.xml file in the data directory,

6.28. Application Schema Support 177

GeoServer User Manual, Release 2.1-RC4

Canonical schema location

The default GeoServer behaviour is to encode WFS responses that include a schemaLocation for the WFS
schema that is located on the GeoServer instance. A client will not know without retrieving the schema
whether it is identical to the official schema hosted at schemas.opengis.net. The solution is to encode
the schemaLocation for the WFS schema as the canonical location at schemas.opengis.net.

To enable this option, choose one of these:

1. Either: On the Service→WFS page under Conformance check Encode canonical WFS schema location.

2. Or: Insert the following line before the closing tag in wfs.xml:

<canonicalSchemaLocation>true</canonicalSchemaLocation>

Encode using featureMember

By default GeoServer will encode WFS 1.1 responses with multiple features in a single
gml:featureMembers element. This will cause invalid output if a response includes a feature at
the top level that has already been encoded as a nested property of an earlier feature, because there is no
single element that can be used to encode this feature by reference. The solution is to encode responses
using gml:featureMember.

To enable this option, choose one of these:

1. Either: On the Service→WFS page under Encode response with select Multiple “featureMember” elements.

2. Or: Insert the following line before the closing tag in wfs.xml:

<encodeFeatureMember>true</encodeFeatureMember>

Configuration

Configuration of an app-schema complex feature type requires manual construction of a GeoServer data
directory that contains an XML mapping file and a datastore.xml that points at this mapping file. The
data directory also requires all the other ancillary configuration files used by GeoServer for simple features.
GeoServer can serve simple and complex features at the same time.

Workspace layout

The GeoServer data directory contains a folder called workspaces with the following structure:

workspaces
- gsml

- SomeDataStore
- SomeFeatureType

- featuretype.xml
- datastore.xml
- SomeFeatureType-mapping-file.xml

Note: The folder inside workspaces must have a name (the workspace name) that is the same as the
namespace prefix (gsml in this example).

178 Chapter 6. Working with Data

GeoServer User Manual, Release 2.1-RC4

Datastore

Each data store folder contains a file datastore.xml that contains the configuration parameters of
the data store. To create an app-schema feature type, the data store must be configured to load
the app-schema service module and process the mapping file. These options are contained in the
connectionParameters:

• namespace defines the XML namespace of the complex feature type.

• url is a file: URL that gives the location of the app-schema mapping file relative to the root of the
GeoServer data directory.

• dbtype must be app-schema to trigger the creation of an app-schema feature type.

Mapping File

An app-schema feature type is configured using a mapping file that defines the data source for the feature
and the mappings from the source data to XPaths in the output XML.

Outline

Here is an outline of a mapping file:

<?xml version="1.0" encoding="UTF-8"?>
<as:AppSchemaDataAccess xmlns:as="http://www.geotools.org/app-schema"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.geotools.org/app-schema AppSchemaDataAccess.xsd">
<namespaces>...</namespaces>
<includedTypes>...</includedTypes>
<sourceDataStores>...</sourceDataStores>
<catalog>...</catalog>
<targetTypes...</targetTypes>
<typeMappings>...</typeMappings>

</as:AppSchemaDataAccess>

• namespaces defines all the namespace prefixes used in the mapping file.

• includedTypes (optional) defines all the included non-feature type mapping file locations that are
referred in the mapping file.

• sourceDataStores provides the configuration information for the source data stores.

• catalog is the location of the OASIS Catalog used to resolve XML Schema locations.

• targetTypes is the location of the XML Schema that defines the feature type.

• typeMappings give the relationships between the fields of the source data store and the elements of
the output complex feature.

Mapping file schema

• AppSchemaDataAccess.xsd is optional because it is not used by GeoServer. The presence of
AppSchemaDataAccess.xsd in the same folder as the mapping file enables XML editors to observe
its grammar and provide contextual help.

6.28. Application Schema Support 179

GeoServer User Manual, Release 2.1-RC4

Settings

namespaces The namespaces section defines all the XML namespaces used in the mapping file:

<Namespace>
<prefix>gsml</prefix>
<uri>urn:cgi:xmlns:CGI:GeoSciML:2.0</uri>

</Namespace>
<Namespace>

<prefix>gml</prefix>
<uri>http://www.opengis.net/gml</uri>

</Namespace>
<Namespace>

<prefix>xlink</prefix>
<uri>http://www.w3.org/1999/xlink</uri>

</Namespace>

includedTypes (optional) Non-feature types (eg. gsml:CompositionPart is a data type that is nested in
gsml:GeologicUnit) may be mapped separately for its reusability, but we don’t want to configure it as a
feature type as we don’t want to individually access it. Related feature types don’t need to be explicitly
included here as it would have its own workspace configuration for GeoServer to find it. The location path
in Include tag is relative to the mapping file. For an example, if gsml:CompositionPart configuration file
is located in the same directory as the gsml:GeologicUnit configuration:

<includedTypes>
<Include>gsml_CompositionPart.xml</Include>

</includedTypes>

sourceDataStores Every mapping file requires at least one data store to provide data for features. app-
schema reuses GeoServer data stores, so there are many available types. See Data Stores for details of data
store configuration. For example:

<sourceDataStores>
<DataStore>

<id>datastore</id>
<parameters>

...
</parameters>

</DataStore>
...

</sourceDataStores>

If you have more than one DataStore in a mapping file, be sure to give them each a distinct id.

catalog (optional) The location of an OASIS XML Catalog configuration file, given as a path relative to
the mapping file. See Application Schema Resolution for more information. For example:

<catalog>../../../schemas/catalog.xml</catalog>

180 Chapter 6. Working with Data

GeoServer User Manual, Release 2.1-RC4

targetTypes The targetTypes section lists all the application schemas required to define the mapping.
Typically only one is required. For example:

<targetTypes>
<FeatureType>

<schemaUri>http://www.geosciml.org/geosciml/2.0/xsd/geosciml.xsd</schemaUri>
</FeatureType>

</targetTypes>

Mappings

typeMappings and FeatureTypeMapping The typeMappings section is the heart of the app-schema
module. It defines the mapping from simple features to the the nested structure of one or more simple
features. It consists of a list of FeatureTypeMapping elements, which each define one output feature
type. For example:

<typeMappings>
<FeatureTypeMapping>

<mappingName>mappedfeature1</mappingName>
<sourceDataStore>datastore</sourceDataStore>
<sourceType>mappedfeature</sourceType>
<targetElement>gsml:MappedFeature</targetElement>
<attributeMappings>

<AttributeMapping>
...

• mappingName is an optional tag, to identify the mapping in Feature Chaining when there are multiple
FeatureTypeMapping instances for the same type. This is solely for feature chaining purposes, and
would not work for identifying top level features.

• sourceDataStore must be an identifier you provided when you defined a source data store the
sourceDataStores section.

• sourceType is the simple feature type name. For example:

– a table or view name, lowercase for PostGIS, uppercase for Oracle.

– a property file name (without the .properties suffix)

• targetElement is the the element name in the target application schema. This is the same as the
WFS feature type name.

attributeMappings and AttributeMapping attributeMappings comprises a list of
AttributeMapping elements:

<AttributeMapping>
<targetAttribute>...</targetAttribute>
<idExpression>...</idExpression>
<sourceExpression>...</sourceExpression>
<targetAttributeNode>...</targetAttributeNode>
<isMultiple>...</isMultiple>
<ClientProperty>...</ClientProperty>

</AttributeMapping>

6.28. Application Schema Support 181

GeoServer User Manual, Release 2.1-RC4

targetAttribute targetAttribute is the XPath to the output element, in the context of the target ele-
ment. For example, if the containing mapping is for a feature, you should be able to map a gml:name
property by setting the target attribute:

<targetAttribute>gml:name</targetAttribute>

Multivalued attributes resulting from Denormalised sources are automatically encoded. If you wish to encode
multivalued attributes from different input columns as a specific instance of an attribute, you can use a
(one-based) index. For example, you can set the third gml:name with:

<targetAttribute>gml:name[3]</targetAttribute>

The reserved name FEATURE_LINK is used to map data that is not encoded in XML but is required for use
in Feature Chaining.

idExpression A CQL expression that is used to set the gml:id of the output feature type. This could be
a column in a database, the automatically generated simple feature ID obtained with getId(), or some
other expression.

Note: Every feature type must have one idExpression mapping to set its gml:id. This requirement is
an implementation limitation (strictly, gml:id is optional in GML).

Note: gml:id must be an NCName.

sourceExpression (optional) Use a sourceExpression tag to set the element content from source data.
For example, to set the element content from a column called DESCRIPTION:

<sourceExpression><OCQL>DESCRIPTION</OCQL></sourceExpression>

If sourceExpression is not present, the generated element is empty (unless set by another mapping).

You can use CQL expressions to calculate the content of the element. This example concatenated strings
from two columns and a literal:

<sourceExpression>
<OCQL>strConCat(FIRST , strConCat(’ followed by ’, SECOND))</OCQL>

</sourceExpression>

You can also use CQL expressions for vocabulary translations. Read more about it in Vocabulary functions.

Warning: Avoid use of CQL expressions for properties that users will want to query, because the
current implementation cannot reverse these expressions to generate efficient SQL, and will instead
read all features to calculate the property to find the features that match the filter query. Falling back
to brute force search makes queries on CQL-calculated expressions very slow. If you must concatenate
strings to generate content, you may find that doing this in your database is much faster.

linkElement and linkField (optional) The presence of linkElement and linkField change the mean-
ing of sourceExpression to a Feature Chaining mapping, in which the source of the mapping is the fea-
ture of type linkElementwith property linkFieldmatching the expression. For example, the following
sourceExpression uses as the result of the mapping the (possibly multivalued) gsml:MappedFeature
for which gml:name[2] is equal to the value of URN for the source feature. This is in effect a foreign key
relation:

182 Chapter 6. Working with Data

http://www.w3.org/TR/1999/REC-xml-names-19990114/#NT-NCName

GeoServer User Manual, Release 2.1-RC4

<sourceExpression>
<OCQL>URN</OCQL>
<linkElement>gsml:MappedFeature</linkElement>
<linkField>gml:name[2]</linkField>

</sourceExpression>

The feature type gsml:MappedFeature might be defined in another mapping file. The linkField can
be FEATURE_LINK if you wish to relate the features by a property not exposed in XML. See Feature Chaining
for a comprehensive discussion.

For special cases, linkElement could be an OCQL function, and linkField could be omitted. See Poly-
morphism for further information.

targetAttributeNode (optional) targetAttributeNode is required wherever a property type contains
an abstract element and app-schema cannot determine the type of the enclosed attribute. This mapping
must come before the mapping for the enclosed elements. In this example, gsml:positionalAccuracy
is a gsml:CGI_ValuePropertyType which contains a gsml:CGI_Value, which is abstract. In this case,
targetAttributeNode must be used to set the type of the property type to a type that encloses a non-
abstract element:

<AttributeMapping>
<targetAttribute>gsml:positionalAccuracy</targetAttribute>
<targetAttributeNode>gsml:CGI_TermValuePropertyType</targetAttributeNode>

</AttributeMapping>

Note that the GML encoding rules require that complex types are never the direct property of another com-
plex type; they are always contained in a property type to ensure that their type is encoded in a surrounding
element. Encoded GML is always type/property/type/property. This is also known as the GML “strip-
ing” rule. The consequence of this for app-schema mapping files is that targetAttributeNode must be
applied to the property and the type must be set to the XSD property type, not to the type of the contained
attribute (gsml:CGI_TermValuePropertyType not gsml:CGI_TermValueType).

Because the XPath refers to a property type not the encoded content, targetAttributeNode often ap-
pears in a mapping with targetAttribute and no other elements.

isMultiple (optional) The isMultiple element states whether there might be multiple values for this
attribute.Because the default value is false and it is omitted in this case, it is most usually seen as:

<isMultiple>true</isMultiple>

ClientProperty (optional, multivalued) A mapping can have one or more ClientProperty elements
which set XML attributes on the mapping target. Each ClientProperty has a name and a value that is
an arbitrary CQL expression. No OCQL element is used inside value.

This example of a ClientProperty element sets the codeSpace XML attribute to the literal string
urn:ietf:rfc:2141. Note the use of single quotes around the literal string. This could be applied to
any target attribute of GML CodeType:

<ClientProperty>
<name>codeSpace</name>
<value>’urn:ietf:rfc:2141’</value>

</ClientProperty>

6.28. Application Schema Support 183

GeoServer User Manual, Release 2.1-RC4

When the GML association pattern is used to encode a property by reference, the xlink:href attribute is
set and the element is empty. This ClientProperty element sets the xlink:href XML attribute to to the
value of the RELATED_FEATURE_URN field in the data source (for example, a column in an Oracle database
table). This mapping could be applied to any property type, such a gml:FeaturePropertyType, or other
type modelled on the GML association pattern:

<ClientProperty>
<name>xlink:href</name>
<value>RELATED_FEATURE_URN</value>

</ClientProperty>

See the discussion in Feature Chaining for the special case in which xlink:href is created for multivalued
properties by reference.

CQL

• String literals are enclosed in single quotes, for example ’urn:ogc:def:nil:OGC:missing’.

• The uDig manual contains information on CQL:

– http://udig.refractions.net/confluence/display/EN/Common+Query+Language

Database identifiers

When referring to database table/view names or column names, use:

• lowercase for PostGIS

• UPPERCASE for Oracle Spatial and ArcSDE

Denormalised sources

Multivalued properties from denormalised sources (the same source feature ID appears more than once)
are automatically encoded. For example, a view might have a repeated id column with varying name so
that an arbitrarily large number of gml:name properties can be encoded for the output feature.

Warning: Denormalised sources must grouped so that features with duplicate IDs are provided with-
out any intervening features. This can be achieved by ensuring that denormalised source features are
sorted by ID. Failure to observe this restriction will result in data corruption.

Application Schema Resolution

To be able to encode XML responses conforming to a GML application schema, the app-schema plugin
must be able to locate the application schema files (XSDs) that define the schema. This page describes the
schema resolution process.

Supported GML versions

• At this time, only GML 3.1.1 application schemas are supported.

184 Chapter 6. Working with Data

http://udig.refractions.net/confluence/display/EN/Common+Query+Language

GeoServer User Manual, Release 2.1-RC4

• GML 3.1.1 is distributed with GeoServer and does not need to be downloaded nor supplied by the
user.

Schema downloading is now automatic for most users

GeoServer will automatically download and cache (see Cache below) all the schemas it needs the first time
it starts if:

1. All the application schemas you use are accessed via http/https URLs, and

2. Your GeoServer instance is deployed on a network that permits it to download them.

Note: This is the recommended way of using GeoServer app-schema for most users.

If cached downloading is used, no manual handling of schemas will be required. The rest of this page is for
those with more complicated arrangements, or who wish to clear the cache.

Resolution order

The order of sources used to resolve application schemas is:

1. OASIS Catalog

2. Classpath

3. Cache

Every attempt to load a schema works down this list, so imports can be resolved from sources other than
that used for the originating document. For example, an application schema in the cache that references a
schema found in the catalog will use the version in the catalog, rather than caching it. This allows users to
supply unpublished or modified schemas sourced from, for example, the catalog, at the cost of interoper-
ability (how do WFS clients get them?).

OASIS Catalog

An OASIS XML Catalog is a standard configuration file format that instructs an XML processing system
how to process entity references. The GeoServer app-schema resolver uses catalog URI semantics to locate
application schemas, so uri or rewriteURI entries should be present in your catalog. The optional map-
ping file catalog element provides the location of the OASIS XML Catalog configuration file, given as a
path relative to the mapping file, for example:

<catalog>../../../schemas/catalog.xml</catalog>

Earlier versions of the app-schema plugin required all schemas to be present in the catalog. This is no
longer the case. Because the catalog is searched first, existing catalog-based deployments will continue to
work as before.

To migrate an existing GeoServer app-schema deployment that uses an OASIS Catalog to instead use
cached downloads (see Cache below), remove all catalog elements from your mapping files and restart
GeoServer.

6.28. Application Schema Support 185

http://www.oasis-open.org/committees/entity/spec-2001-08-06.html

GeoServer User Manual, Release 2.1-RC4

Classpath

Java applications such as GeoServer can load resources from the Java classpath. GeoServer app-schema uses
a simple mapping from an http or https URL to a classpath resource location. For example, an application
schema published at http://schemas.example.org/exampleml/exml.xsd would be found on the
classpath if it was stored either:

• at /org/example/schemas/exampleml/exml.xsd in a JAR file on the classpath (for example, a
JAR file in WEB-INF/lib) or,

• on the local filesystem at WEB-INF/classes/org/example/schemas/exampleml/exml.xsd .

The ability to load schemas from the classpath is intended to support testing, but may be useful to users
whose communities supply JAR files containing their application schemas.

Cache

If an application schema cannot be found in the catalog or on the classpath, it is downloaded from the
network and stored in a subdirectory app-schema-cache of the GeoServer data directory.

• Once schemas are downloaded into the cache, they persist indefinitely, including over GeoServer
restarts.

• No attempt will be made to retrieve new versions of cached schemas.

• To clear the cache, remove the subdirectory app-schema-cache of the GeoServer data directory and
restart GeoServer.

GeoServer app-schema uses a simple mapping from an http or https URL
to local filesystem path. For example, an application schema published at
http://schemas.example.org/exampleml/exml.xsd would be downloaded and stored as
app-schema-cache/org/example/schemas/exampleml/exml.xsd . Note that:

• Only http and https URLs are supported.

• Port numbers, queries, and fragments are ignored.

If your GeoServer instance is deployed on a network whose firewall rules prevent outgoing TCP connec-
tions on port 80 (http) or 443 (https), schema downloading will not work. (For security reasons, some
service networks [”demilitarised zones”] prohibit such outgoing connections.) If schema downloading is
not permitted on your network, there are three solutions:

1. Either: Install and configure GeoServer on another network that can make outgoing TCP connections,
start GeoServer to trigger schema download, and then manually copy the app-schema-cache direc-
tory to the production server. This is the easiest option because GeoServer automatically downloads
all the schemas it needs, including dependencies.

2. Or: Deploy JAR files containing all required schema files on the classpath (see Classpath above).

3. Or: Use a catalog (see OASIS Catalog above).

Secondary Namespaces

What is a secondary namespace?

A secondary namespace is one that is referenced indirectly by the main schema, that is, one schema imports
another one as shown below:

186 Chapter 6. Working with Data

GeoServer User Manual, Release 2.1-RC4

a.xsd imports b.xsd
b.xsd imports c.xsd

(using a, b and c as the respective namespace prefixes for a.xsd, b.xsd and c.xsd):

a.xsd declares b:prefix
b.xsd declares c:prefix

The GeoTools encoder does not honour these namespaces and writes out:

"a:" , "b:" but NOT "c:"

The result is c’s element being encoded as:

<null:cElement/>

When to configure for secondary namespaces

If your application spans several namespaces which may be very common in application schemas.

A sure sign that calls for secondary namespace configuration is when prefixes for namespaces are printed
out as the literal string “null”. In order to allow GeoServer App-Schema to support secondary namespaces,
please follow the steps outlined below:

Using the sampling namespace as an example.

Step 1:Create the Secondary Namespace folder

Create a folder to represent the secondary namespace in the data/workspaces directory, in our example
that will be the “sa” folder.

Step 2:Create files

Create two files below in the “sa” folder:

1. namespace.xml

2. workspace.xml

Step 3:Edit content of files

Contents of these files are as follows:

namespace.xml(uri is a valid uri for the secondary namespace, in this case the sampling namespace uri):

<namespace>
<id>sa_workspace</id>
<prefix>sa</prefix>
<uri>http://www.opengis.net/sampling/1.0</uri>

</namespace>

6.28. Application Schema Support 187

GeoServer User Manual, Release 2.1-RC4

workspace.xml:

<workspace>
<id>sa_workspace</id>
<name>sa</name>

</workspace>

That’s it.

Your workspace is now configured to use a Secondary Namespace.

Vocabulary functions

Scope

This page describes how to serve vocabulary translations using some function expressions in application
schema mapping file. If you’re not familiar with application schema mapping file, read Mapping File.

Versions supported This functionality is supported from GeoTools version 2.6-M2 onwards.

Useful functions

Recode function This is similar to if_then_else function, except that there is no default clause. You have to
specify a translation value for every vocabulary key.

Syntax:

Recode(COLUMN_NAME, key1, value1, key2, value2,...)

• COLUMN_NAME: column name to get values from

Example:

<AttributeMapping>
<targetAttribute>gml:name</targetAttribute>
<sourceExpression>

<OCQL>Recode(ABBREVIATION, ’1GRAV’, ’urn:cgi:classifier:CGI:SimpleLithology:2008:gravel’,
’1TILL’, ’urn:cgi:classifier:CGI:SimpleLithology:2008:diamictite’,
’6ALLU’, ’urn:cgi:classifier:CGI:SimpleLithology:2008:sediment’)

</OCQL>
</sourceExpression>

</AttributeMapping>

The above example will map gml:name value to urn:cgi:classifier:CGI:SimpleLithology:2008:gravel if the AB-
BREVIATION column value is 1GRAV.

Categorize function This is more suitable for numeric keys, where the translation value is determined by
the key’s position within the thresholds.

Syntax:

Categorize(COLUMN_NAME, default_value, threshold 1, value 1, threshold 2, value 2, ..., [preceding/succeeding])

• COLUMN_NAME: data source column name

188 Chapter 6. Working with Data

GeoServer User Manual, Release 2.1-RC4

• default_value: default value to be mapped if COLUMN_NAME value is not within the threshold

• threshold(n): threshold value

• value(n): value to be mapped if the threshold is met

• preceding/succeeding:

– optional, succeeding is used by default if not specified.

– not case sensitive.

– preceding: value is within threshold if COLUMN_NAME value > threshold

– succeeding: value is within threshold if COLUMN_NAME value >= threshold

Example:

<AttributeMapping>
<targetAttribute>gml:description</targetAttribute>
<sourceExpression>

<OCQL>Categorize(CGI_LOWER_RANGE, ’missing_value’, 1000, ’minor’, 5000, ’significant’)</OCQL>
</sourceExpression>

</AttributeMapping>

The above example means gml:description value would be significant if CGI_LOWER_RANGE column
value is >= 5000.

Vocab function This is the new function Jody implemented, and more useful for bigger vocabulary pairs.
Instead of writing a long key-to-value pairs in the function, you can keep them in a separate properties file.
The properties file serves as a lookup table to the function. It has no header, and only contains the pairs in
‘’<key>=<value>” format.

Syntax:

Vocab(COLUMN_NAME, properties file URI)

• COLUMN_NAME: column name to get values from

• properties file URI: absolute path of the properties file or relative to the mapping file location

Example:

Properties file:

1GRAV=urn:cgi:classifier:CGI:SimpleLithology:2008:gravel
1TILL=urn:cgi:classifier:CGI:SimpleLithology:2008:diamictite
6ALLU=urn:cgi:classifier:CGI:SimpleLithology:2008:sediment

Mapping file:

<AttributeMapping>
<targetAttribute>gml:name</targetAttribute>
<sourceExpression>

<OCQL>Vocab(ABBREVIATION, ’/test-data/mapping.properties’)</OCQL>
</sourceExpression>

</AttributeMapping>

The above example will map gml:name to urn:cgi:classifier:CGI:SimpleLithology:2008:gravel if ABBREVIA-
TION value is 1GRAV.

6.28. Application Schema Support 189

GeoServer User Manual, Release 2.1-RC4

Property Interpolation

Interpolation in this context means the substitution of variables into strings. GeoServer app-schema sup-
ports the interpolation of properties (the Java equivalent of environment variables) into app-schema map-
ping files. This can be used, for example, to simplify the management of database connection parameters
that would otherwise be hardcoded in a particular mapping file. This enables data directories to be given to
third parties without inapplicable authentication or system configuration information. Externalising these
parameters make management easier.

Defining properties

• If the system property app-schema.properties is not set, properties are
loaded from WEB-INF/classes/app-schema.properties (or another resource
/app-schema.properties on the classpath).

• If the system property app-schema.properties is set, properties are loaded from the file named
as the value of the property. This is principally intended for debugging, and is designed to be used in
an Eclipse launch configuration.

– For example, if the JVM is started with -Dapp-schema.properties=/path/to/some/local.properties,
properties are loaded from /path/to/some/local.properties.

• System properties override properties defined in a configuration file, so if you define
-Dsome.property at the java command line, it will override a value specified in the
app-schema.properties file. This is intended for debugging, so you can set a property file in
an Eclipse launch configuration, but override some of the properties contained in the file by setting
them explicitly as system properties.

• All system properties are available for interpolation in mapping files.

Using properties

• Using ${some.property} anywhere in the mapping file will cause it to be replaced by the value of
the property some.property.

• It is an error for a property that has not been set to be used for interpolation.

• Interpolation is performed repeatedly, so values can contain new interpolations. Use this behaviour
with caution because it may cause an infinite loop.

• Interpolation is performed before XML parsing, so can be used to include arbitrary chunks of XML.

Example of property interpolation

This example defines an Oracle data store, where the connection parameter are interpolated from proper-
ties:

<sourceDataStores>
<DataStore>

<id>datastore</id>
<parameters>

<Parameter>
<name>dbtype</name>
<value>Oracle</value>

190 Chapter 6. Working with Data

GeoServer User Manual, Release 2.1-RC4

</Parameter>
<Parameter>

<name>host</name>
<value>${example.host}</value>

</Parameter>
<Parameter>

<name>port</name>
<value>1521</value>

</Parameter>
<Parameter>

<name>database</name>
<value>${example.database}</value>

</Parameter>
<Parameter>

<name>user</name>
<value>${example.user}</value>

</Parameter>
<Parameter>

<name>passwd</name>
<value>${example.passwd}</value>

</Parameter>
</parameters>

</DataStore>
</sourceDataStores>

Example property file

This sample property file gives the property values that are interpolated into the mapping file fragment
above. These properties can be installed in WEB-INF/classes/app-schema.properties in your
GeoServer installation:

example.host = database.example.com
example.database = example
example.user = dbuser
example.passwd = s3cr3t

Data Stores

The app-schema Mapping File requires you to specify your data sources in the sourceDataStores section.
For GeoServer simple features, these are configured using the web interface, but because app-schema lacks
a web configuration interface, data stores must be configured by editing the mapping file.

Many configuration options may be externalised through the use of Property Interpolation.

The DataStore element

A DataStore configuration consists of

• an id, which is an opaque identifier used to refer to the data store elsewhere in a mapping file, and

• one or more Parameter elements, which each contain the name and value of one parameter, and
are used to configure the data store.

An outline of the DataStore element:

6.28. Application Schema Support 191

GeoServer User Manual, Release 2.1-RC4

<DataStore>
<id>datastore</id>
<parameters>

<Parameter>
<name>...</name>
<value>...</value>

</Parameter>
...

</parameters>
</DataStore>

Parameter order is not significant.

Database options

Databases such as PostGIS, Oracle, and ArcSDE share some common or similar configuration options.

name Meaning value examples
dbtype Database type postgisng, Oracle, arcsde
host Host name or IP address of database

server
database.example.org, 192.168.3.12

port TCP port on database server Default if omitted: 1521 (Oracle), 5432 (PostGIS),
5151 (ArcSDE)

databasePostGIS/Oracle database
instanceArcSDE instance
schema The database schema
user The user name used to login to the

database server
passwd The password used to login to the

database server

PostGIS

Set the parameter dbtype to postgisng to use the PostGIS NG (New Generation) driver bundled with
GeoServer 2.0 and later.

Example:

<DataStore>
<id>datastore</id>
<parameters>

<Parameter>
<name>dbtype</name>
<value>postgisng</value>

</Parameter>
<Parameter>

<name>host</name>
<value>postgresql.example.org</value>

</Parameter>
<Parameter>

<name>port</name>
<value>5432</value>

</Parameter>

192 Chapter 6. Working with Data

GeoServer User Manual, Release 2.1-RC4

<Parameter>
<name>database</name>
<value>test</value>

</Parameter>
<Parameter>

<name>user</name>
<value>test</value>

</Parameter>
<Parameter>

<name>passwd</name>
<value>test</value>

</Parameter>
</parameters>

</DataStore>

Note: PostGIS support is included in the main GeoServer bundle, so a separate plugin is not required.

Oracle

Set the parameter dbtype to Oracle to use the Oracle Spatial NG (New Generation) driver compatible
with GeoServer 2.0 and later.

Example:

<DataStore>
<id>datastore</id>
<parameters>

<Parameter>
<name>dbtype</name>
<value>Oracle</value>

</Parameter>
<Parameter>

<name>host</name>
<value>oracle.example.org</value>

</Parameter>
<Parameter>

<name>port</name>
<value>1521</value>

</Parameter>
<Parameter>

<name>database</name>
<value>demodb</value>

</Parameter>
<Parameter>

<name>user</name>
<value>orauser</value>

</Parameter>
<Parameter>

<name>passwd</name>
<value>s3cr3t</value>

</Parameter>
</parameters>

</DataStore>

Note: You must install the Oracle plugin to connect to Oracle Spatial databases.

6.28. Application Schema Support 193

GeoServer User Manual, Release 2.1-RC4

ArcSDE

This example connects to an ArcSDE database:

<DataStore>
<id>datastore</id>
<parameters>

<Parameter>
<name>dbtype</name>
<value>arcsde</value>

</Parameter>
<Parameter>

<name>server</name>
<value>arcsde.example.org</value>

</Parameter>
<Parameter>

<name>port</name>
<value>5151</value>

</Parameter>
<Parameter>

<name>instance</name>
<value>sde</value>

</Parameter>
<Parameter>

<name>user</name>
<value>demo</value>

</Parameter>
<Parameter>

<name>password</name>
<value>s3cr3t</value>

</Parameter>
<Parameter>

<name>datastore.allowNonSpatialTables</name>
<value>true</value>

</Parameter>
</parameters>

</DataStore>

The use of non-spatial tables aids delivery of application schemas that use non-spatial properties.

Note: You must install the ArcSDE plugin to connect to ArcSDE databases.

Shapefile

Shapefile data sources are identified by the presence of a parameter url, whose value should be the file
URL for the .shp file.

In this example, only the url parameter is required. The others are optional:

<DataStore>
<id>shapefile</id>
<parameters>

<Parameter>
<name>url</name>
<value>file:/D:/Workspace/shapefiles/VerdeRiverBuffer.shp</value>

</Parameter>
<Parameter>

194 Chapter 6. Working with Data

GeoServer User Manual, Release 2.1-RC4

<name>memory mapped buffer</name>
<value>false</value>

</Parameter>
<Parameter>

<name>create spatial index</name>
<value>true</value>

</Parameter>
<Parameter>

<name>charset</name>
<value>ISO-8859-1</value>

</Parameter>
</parameters>

</DataStore>

Note: The url in this case is an example of a Windows filesystem path translated to URL notation.

Note: Shapefile support is included in the main GeoServer bundle, so a separate plugin is not required.

Property file

Property files are configured by specifying a directory that is a file: URI.

• If the directory starts with file:./ it is relative to the mapping file directory. (This is an invalid URI,
but it works.)

For example, the following data store is used to access property files in the same directory as the mapping
file:

<DataStore>
<id>propertyfile</id>
<parameters>

<Parameter>
<name>directory</name>
<value>file:./</value>

</Parameter>
</parameters>

</DataStore>

A property file data store contains all the feature types stored in .properties files in the directory. For
example, if the directory contained River.properties and station.properties, the data store would be able
to serve them as the feature types River and station. Other file extensions are ignored.

Note: Property file support is included in the main GeoServer bundle, so a separate plugin is not required.

JNDI

Defining a JDBC data store with a jndiReferenceName allows you to use a connection pool provided
by your servlet container. This allows detailed configuration of connection pool parameters and sharing of
connections between data sources, and even between servlets.

To use a JNDI connection provider:

1. Specify a dbtype parameter to to indicate the database type. These values are the same as for the
non-JNDI examples above.

6.28. Application Schema Support 195

GeoServer User Manual, Release 2.1-RC4

2. Give the jndiReferenceName you set in your servlet container. Both the abbreviated form
jdbc/oracle form, as in Tomcat, and the canonical form java:comp/env/jdbc/oracle are sup-
ported.

This example uses JNDI to obtain Oracle connections:

<DataStore>
<id>datastore</id>
<parameters>

<Parameter>
<name>dbtype</name>
<value>Oracle</value>

</Parameter>
<Parameter>

<name>jndiReferenceName</name>
<value>jdbc/oracle</value>

</Parameter>
</parameters>

</DataStore>

Your servlet container my require you to add a resource-ref section at the end of your
geoserver/WEB-INF/web.xml. (Tomcat requires this, Jetty does not.) For example:

<resource-ref>
<description>Oracle Spatial Datasource</description>
<res-ref-name>jdbc/oracle</res-ref-name>
<res-type>javax.sql.DataSource</res-type>
<res-auth>Container</res-auth>

</resource-ref>

Here is an example of a Tomcat 6 context in /etc/tomcat6/server.xml that includes an Oracle connec-
tion pool:

<Context
path="/geoserver"
docBase="/usr/local/geoserver"
crossContext="false"
reloadable="false">
<Resource

name="jdbc/oracle"
auth="Container"
type="javax.sql.DataSource"
url="jdbc:oracle:thin:@YOUR_DATABASE_HOSTNAME:1521:YOUR_DATABASE_NAME"
driverClassName="oracle.jdbc.driver.OracleDriver"
username="YOUR_DATABASE_USERNAME"
password="YOUR_DATABASE_PASSWORD"
maxActive="20"
maxIdle="10"
minIdle="0"
maxWait="10000"
minEvictableIdleTimeMillis="300000"
timeBetweenEvictionRunsMillis="300000"
numTestsPerEvictionRun="20"
poolPreparedStatements="true"
maxOpenPreparedStatements="100"
testOnBorrow="true"
validationQuery="SELECT SYSDATE FROM DUAL" />

</Context>

196 Chapter 6. Working with Data

GeoServer User Manual, Release 2.1-RC4

Firewall timeouts can silently sever idle connections to the database and cause GeoServer to hang. If there is
a firewall between GeoServer and the database, a connection pool configured to shut down idle connections
before the firewall can drop them will prevent GeoServer from hanging. This JNDI connection pool is
configured to shut down idle connections after 5 to 10 minutes.

See also Setting up a JNDI connection pool with Tomcat.

Feature Chaining

Scope

This page describes the use of “Feature Chaining” to compose complex features from simpler components,
and in particular to address some requirements that have proven significant in practice.

• Handling multiple cases of multi-valued properties within a single Feature Type

• Handing nesting of multi-valued properties within other multi-valued properties

• Linking related (through association) Feature Types, and in particular allowing re-use of the related
features types (for example the O&M pattern has relatedObservation from a samplingFeature, but
Observation may be useful in its own right)

• Encoding the same referenced property object as links when it appears in multiple containing features

• Eliminating the need for large denormalized data store views of top level features and their related
features. Denormalized views would still be needed for special cases, such as many-to-many relation-
ships, but won’t be as large.

The current state of the User guide refers to setting up Geotools application schema configurations, and
will be updated to reflect a Geoserver 2.0 configuration example shortly. For non-application schema con-
figurations, please refer to Data Access Integration.

Versions supported Feature chaining is implemented within the app-schemas module in GeoTools trunk
(from 2.6.x on). Work on supporting this in Geoserver trunk is currently underway. It is not supported in
GeoServer 1.6 community-schemas.

Mapping steps

Create a mapping file for every complex type We need one mapping file per complex type that is going
to be nested, including non features, e.g. gsml:CompositionPart.

Non-feature types that cannot be individually accessed (eg. CompositionPart as a Data Type) can still be
mapped separately for its reusability. For this case, the containing feature type has to include these types in
its mapping file. The include tag should contain the nested mapping file path relative to the location of the
containing type mapping file. In GeologicUnit_MappingFile.xml:

<includedTypes>
<Include>CGITermValue_MappingFile.xml</Include>
<Include>CompositionPart_MappingFile.xml</Include>

</includedTypes>

Feature types that can be individually accessed don’t need to be explicitly included in the mapping file, as
they would be configured for GeoServer to find. Such types would have their mapping file associated with
a corresponding datastore.xml file, which means that it can be found from the data store registry. In other

6.28. Application Schema Support 197

GeoServer User Manual, Release 2.1-RC4

words, if the type is associated with a datastore.xml file, it doesn’t need to be explicitly included if referred
from another mapping file.

Example:

For this output: MappedFeature_Output.xml, here are the mapping files:

• MappedFeature_MappingFile.xml

• GeologicUnit_MappingFile.xml

• CompositionPart_MappingFile.xml

• GeologicEvent_MappingFile.xml

• CGITermValue_MappingFile.xml

GeologicUnit type

You can see within GeologicUnit features, both gml:composition (CompositionPart type) and
gsml:geologicHistory (GeologicEvent type) are multi-valued properties. It shows how multiple cases of
multi-valued properties can be configured within a single Feature Type. This also proves that you can
“chain” non-feature type, as CompositionPart is a Data Type.

GeologicEvent type

Both gsml:eventEnvironment (CGI_TermValue type) and gsml:eventProcess (also of CGI_TermValue type)
are multi-valued properties. This also shows that “chaining” can be done on many levels, as GeologicEvent
is nested inside GeologicUnit. Note that gsml:eventAge properties are configured as inline attributes, as
there can only be one event age per geologic event, thus eliminating the need for feature chaining.

Configure nesting on the nested feature type In the nested feature type, make sure we have a field that
can be referenced by the parent feature. If there isn’t any existing field that can be referred to, the system
field FEATURE_LINK can be mapped to hold the foreign key value. This is a multi-valued field, so more
than one instances can be mapped in the same feature type, for features that can be nested by different
parent types. Since this field doesn’t exist in the schema, it wouldn’t appear in the output document.

In the source expression tag:

• OCQL: the value of this should correspond to the OCQL part of the parent feature

Example One: Using FEATURE_LINK in CGI TermValue type, which is referred by GeologicEvent as
gsml:eventProcess and gsml:eventEnvironment.

In GeologicEvent (the container feature) mapping:

<AttributeMapping>
<targetAttribute>gsml:eventEnvironment</targetAttribute>
<sourceExpression>

<OCQL>getID()</OCQL>
<linkElement>gsml:CGI_TermValue</linkElement>
<linkField>FEATURE_LINK[1]</linkField>

</sourceExpression>
<isMultiple>true</isMultiple>

</AttributeMapping>
<AttributeMapping>

<targetAttribute>gsml:eventProcess</targetAttribute>
<sourceExpression>

<OCQL>getID()</OCQL>
<linkElement>gsml:CGI_TermValue</linkElement>
<linkField>FEATURE_LINK[2]</linkField>

</sourceExpression>

198 Chapter 6. Working with Data

GeoServer User Manual, Release 2.1-RC4

<isMultiple>true</isMultiple>
</AttributeMapping>

In CGI_TermValue (the nested feature) mapping:

<AttributeMapping>
<!-- FEATURE_LINK[1] is referred by geologic event as environment -->
<targetAttribute>FEATURE_LINK[1]</targetAttribute>
<sourceExpression>

<OCQL>ENVIRONMENT_OWNER</OCQL>
</sourceExpression>

</AttributeMapping>
<AttributeMapping>

<!-- FEATURE_LINK[2] is referred by geologic event as process -->
<targetAttribute>FEATURE_LINK[2]</targetAttribute>
<sourceExpression><

<OCQL>PROCESS_OWNER</OCQL>
</sourceExpression>

</AttributeMapping>

The ENVIRONMENT_OWNER column in CGI_TermValue view corresponds to the ID column in Geolog-
icEvent view.

Geologic Event property file:

id GEO-
LOGIC_UNIT_ID:String

ghmi-
nage:String

ghmax-
age:String

ghage_cdspace:String

ge.26931120gu.25699 Oligocene Paleocene urn:cgi:classifierScheme:ICS:StratChart:2008
ge.26930473gu.25678 Holocene Pleistocene urn:cgi:classifierScheme:ICS:StratChart:2008
ge.26930960gu.25678 Pliocene Miocene urn:cgi:classifierScheme:ICS:StratChart:2008
ge.26932959gu.25678 LowerOr-

dovician
LowerOr-
dovician

urn:cgi:classifierScheme:ICS:StratChart:2008

CGI Term Value property file:

id VALUE:String PROCESS_OWNER:String ENVIRONMENT_OWNER:String
3 fluvial NULL ge.26931120
4 swamp/marsh/bog NULL ge.26930473
5 marine NULL ge.26930960
6 submarine fan NULL ge.26932959
7 hemipelagic NULL ge.26932959
8 detrital deposition still water ge.26930473 NULL
9 water [process] ge.26932959 NULL
10 channelled stream flow ge.26931120 NULL
11 turbidity current ge.26932959 NULL

The system field FEATURE_LINK doesn’t get encoded in the output:

<gsml:GeologicEvent>
<gml:name codeSpace="urn:cgi:classifierScheme:GSV:GeologicalUnitId">gu.25699</gml:name>
<gsml:eventAge>
<gsml:CGI_TermRange>

<gsml:lower>
<gsml:CGI_TermValue>
<gsml:value codeSpace="urn:cgi:classifierScheme:ICS:StratChart:2008">Oligocene</gsml:value>

</gsml:CGI_TermValue>
</gsml:lower>
<gsml:upper>

6.28. Application Schema Support 199

GeoServer User Manual, Release 2.1-RC4

<gsml:CGI_TermValue>
<gsml:value codeSpace="urn:cgi:classifierScheme:ICS:StratChart:2008">Paleocene</gsml:value>

</gsml:CGI_TermValue>
</gsml:upper>

</gsml:CGI_TermRange>
</gsml:eventAge>
<gsml:eventEnvironment>
<gsml:CGI_TermValue>

<gsml:value>fluvial</gsml:value>
</gsml:CGI_TermValue>

</gsml:eventEnvironment>
<gsml:eventProcess>
<gsml:CGI_TermValue>

<gsml:value>channelled stream flow</gsml:value>
</gsml:CGI_TermValue>

</gsml:eventProcess>

Example Two: Using existing field (gml:name) to hold the foreign key, see MappedFea-
ture_MappingFile.xml:

gsml:specification links to gml:name in GeologicUnit:

<AttributeMapping>
<targetAttribute>gsml:specification</targetAttribute>
<sourceExpression>
<OCQL>GEOLOGIC_UNIT_ID</OCQL>
<linkElement>gsml:GeologicUnit</linkElement>
<linkField>gml:name[3]</linkField>

</sourceExpression>
</AttributeMapping>

In GeologicUnit_MappingFile.xml:

GeologicUnit has 3 gml:name properties in the mapping file, so each has a code space to clarify them:

<AttributeMapping>
<targetAttribute>gml:name[1]</targetAttribute>
<sourceExpression>
<OCQL>ABBREVIATION</OCQL>

</sourceExpression>
<ClientProperty>
<name>codeSpace</name>
<value>’urn:cgi:classifierScheme:GSV:GeologicalUnitCode’</value>

</ClientProperty>
</AttributeMapping>
<AttributeMapping>

<targetAttribute>gml:name[2]</targetAttribute>
<sourceExpression>
<OCQL>NAME</OCQL>

</sourceExpression>
<ClientProperty>
<name>codeSpace</name>
<value>’urn:cgi:classifierScheme:GSV:GeologicalUnitName’</value>

</ClientProperty>
</AttributeMapping>
<AttributeMapping>

<targetAttribute>gml:name[3]</targetAttribute>
<sourceExpression>

200 Chapter 6. Working with Data

GeoServer User Manual, Release 2.1-RC4

<OCQL>strTrim(getId())</OCQL>
</sourceExpression>
<ClientProperty>
<name>codeSpace</name>
<value>’urn:cgi:classifierScheme:GSV:MappedFeatureReference’</value>

</ClientProperty>
</AttributeMapping>

The output with multiple gml:name properties and their code spaces:

<gsml:specification>
<gsml:GeologicUnit gml:id="gu.25678">

<gml:description>Olivine basalt, tuff, microgabbro, minor sedimentary rocks</gml:description>
<gml:name codeSpace="urn:cgi:classifierScheme:GSV:GeologicalUnitCode">-Py</gml:name>
<gml:name codeSpace="urn:cgi:classifierScheme:GSV:GeologicalUnitName">Yaugher Volcanic Group</gml:name>
<gml:name codeSpace="urn:cgi:classifierScheme:GSV:MappedFeatureReference">gu.25678</gml:name>

If this is the “one” side of a one-to-many or many-to-one database relationship, we can use the feature id
as the source expression field, as you can see in above examples. See one_to_many_relationship.JPG as an
illustration.

If we have a many-to-many relationship, we have to use one denormalized view for either side of the
nesting. This means we can either use the feature id as the referenced field, or assign a column to serve this
purpose. See many_to_many_relationship.JPG as an illustration.

Note:

• For many-to-many relationships, we can’t use the same denormalized view for both sides of the nest-
ing.

Test this configuration by running a getFeature request for the nested feature type on its own.

Configure nesting on the “containing” feature type When nesting another complex type, you need to
specify in your source expression:

• OCQL: OGC’s Common Query Language expression of the data store column

• linkElement:

– the nested element name, which is normally the targetElement or mappingName of the cor-
responding type.

– on some cases, it has to be an OCQL function (see Polymorphism)

• linkField: the indexed XPath attribute on the nested element that OCQL corresponds to

Example: Nesting composition part in geologic unit feature.

In Geologic Unit mapping file:

<AttributeMapping>
<targetAttribute>gsml:composition</targetAttribute>
<sourceExpression>

<OCQL>getID()</OCQL>
<linkElement>gsml:CompositionPart</linkElement>
<linkField>FEATURE_LINK</linkField>

</sourceExpression>
<isMultiple>true</isMultiple>

</AttributeMapping>

6.28. Application Schema Support 201

GeoServer User Manual, Release 2.1-RC4

• OCQL: getID() returns the geologic unit id

• linkElement: links to gsml:CompositionPart type

• linkField: FEATURE_LINK, the linking field mapped in gsml:CompositionPart type that also stores
the geologic unit id. If there are more than one of these attributes in the nested feature type, make
sure the index is included, e.g. FEATURE_LINK[2].

Geologic Unit property file:

id ABBREVI-
ATAION:String

NAME:String TEXTDESCRIPTION:String

gu.25699 -Py Yaugher Volcanic
Group

Olivine basalt, tuff, microgabbro, minor
sedimentary rocks

gu.25678 -Py Yaugher Volcanic
Group

Olivine basalt, tuff, microgabbro, minor
sedimentary rocks

Composition Part property file:

id COMPO-
NENT_ROLE:String

PROPOR-
TION:String

GEO-
LOGIC_UNIT_ID:String

cp.167775491936278812interbedded component significant gu.25699
cp.167775491936278856interbedded component minor gu.25678
cp.167775491936278844sole component major gu.25678

Run the getFeature request to test this configuration. Check that the nested features returned in Step 2 are
appropriately lined inside the containing features. If they are not there, or exceptions are thrown, scroll
down and read the “Trouble Shooting” section.

Multiple mappings of the same type

At times, you may find the need to have different FeatureTypeMapping instances for the same
type. You may have two different attributes of the same type that need to be nested. For exam-
ple, in gsml:GeologicUnit, you have gsml:exposureColor and gsml:outcropCharacter that are both of
gsml:CGI_TermValue type.

This is when the optional mappingName tag mentioned in Mapping File comes in. Instead of passing in
the nested feature type’s targetElement in the containing type’s linkElement, specify the corresponding
mappingName.

Note:

• The mappingName is namespace aware and case sensitive.

• When the referred mappingName contains special characters such as ‘-‘, it must be enclosed with
single quotes in the linkElement. E.g. <linkElement>’observation-method’</linkElement>.

• Each mappingName must be unique against other mappingName and targetElement tags across the
application.

• The mappingName is only to be used to identify the chained type from the nesting type. It is not a
solution for multiple FeatureTypeMapping instances where > 1 of them can be queried as top level
features.

• When queried as a top level feature, the normal targetElement is to be used. Filters involving the
nested type should still use the targetElement in the PropertyName part of the query.

• You can’t have more than 1 FeatureTypeMapping of the same type in the same mapping file if one
of them is a top level feature. This is because featuretype.xml would look for the targetElement and
wouldn’t know which one to get.

202 Chapter 6. Working with Data

GeoServer User Manual, Release 2.1-RC4

The solution for the last point above is to break them up into separate files and locations with only 1
featuretype.xml in the intended top level feature location. E.g.

• You can have 2 FeatureTypeMapping instances in the same file for gsml:CGI_TermValue type since
it’s not a feature type.

• You can have 2 FeatureTypeMapping instances for gsml:MappedFeature, but they have to be broken
up into separate files. The one that can be queried as top level feature type would have feature-
type.xml in its location.

Nesting simple properties

You don’t need to chain multi-valued simple properties and map them separately. The original configura-
tion would still work.

Filtering nested attributes on chained features

Filters would work as usual. You can supply the full XPath of the attribute, and the code would handle
this. E.g. You can run the following filter on gsml:MappedFeatureUseCase2A:

<ogc:Filter>
<ogc:PropertyIsEqualTo>

<ogc:Function name="contains_text">
<ogc:PropertyName>gsml:specification/gsml:GeologicUnit/gml:description</ogc:PropertyName>
<ogc:Literal>Olivine basalt, tuff, microgabbro, minor sedimentary rocks</ogc:Literal>

</ogc:Function>
<ogc:Literal>1</ogc:Literal>

</ogc:PropertyIsEqualTo>
</ogc:Filter>

Multi-valued properties by reference (xlink:href)

You may want to use feature chaining to set multi-valued properties by reference. This is particularly handy
to avoid endless loop in circular relationships. For example, you may have a circular relationship between
gsml:MappedFeature and gsml:GeologicUnit. E.g.

• gsml:MappedFeature has gsml:GeologicUnit as gsml:specification

• gsml:GeologicUnit has gsml:MappedFeature as gsml:occurrence

Obviously you can only encode one side of the relationship, or you’ll end up with an endless loop. You
would need to pick one side to “chain” and use xlink:href for the other side of the relationship.

For this example, we are nesting gsml:GeologicUnit in gsml:MappedFeature as gsml:specification.

• Set up nesting on the container feature type mapping as usual:

<AttributeMapping>
<targetAttribute>gsml:specification</targetAttribute>
<sourceExpression>

<OCQL>GEOLOGIC_UNIT_ID</OCQL>
<linkElement>gsml:GeologicUnit</linkElement>
<linkField>gml:name[2]</linkField>

</sourceExpression>
</AttributeMapping>

6.28. Application Schema Support 203

GeoServer User Manual, Release 2.1-RC4

• Set up xlink:href as client property on the other mapping file:

<AttributeMapping>
<targetAttribute>gsml:occurrence</targetAttribute>
<sourceExpression>

<OCQL>strTrim(getId())</OCQL>
<linkElement>gsml:MappedFeature</linkElement>
<linkField>gsml:specification</linkField>

</sourceExpression>
<isMultiple>true</isMultiple>
<ClientProperty>

<name>xlink:href</name>
<value>strConcat(’urn:cgi:feature:MappedFeature:’, getId())</value>

</ClientProperty>
</AttributeMapping>

As we are getting the client property value from a nested feature, we have to set it as if we are chaining the
feature; but we also add the client property containing xlink:href in the attribute mapping. The code will
detect the xlink:href setting, and will not proceed to build the nested feature’s attributes, and we will end
up with empty attributes with xlink:href client properties.

This would be the encoded result for gsml:GeologicUnit:

<gsml:GeologicUnit gml:id="gu.25678">
<gsml:occurrence xlink:href="urn:cgi:feature:MappedFeature:mf2"/>
<gsml:occurrence xlink:href="urn:cgi:feature:MappedFeature:mf3"/>

Note:

• In the example above, we use strConcat(‘urn:cgi:feature:MappedFeature:’, getId()) as Client Prop-
erty value. The function getId() would return the id value from the nested feature table
(gsml:MappedFeature). You can use other column names from the nested feature data store.

• Lastly, don’t forget to add XLink in your mapping file namespaces section, or you could end up with
a StackOverflowException as the xlink:href client property won’t be recognized and the mappings
would chain endlessly.

Troubleshooting

1. Error message:”java.lang.RuntimeException: org.geotools.data.DataSourceException: Feature type ... not found. Has the data access been registered in DataAccessRegistry? Available:...”.

• Check that the nested feature type mapping file exists.

• Check that the nested feature type name is consistent with the linkElement in the containing
feature type.

2. The nested features aren’t shown.

• Check that the OCQL tag in the “container” type points to the right column in the data store.

• If the nested type uses getID() as the OCQL source expression for the referenced field, ensure
it’s wrapped in String converting functions such as strTrim() or strConcat().

3. Error message:”java.lang.IllegalArgumentException: Don’t know how to map ...”

204 Chapter 6. Working with Data

GeoServer User Manual, Release 2.1-RC4

• Check that the linkField tag in the “container” type points to the right field on the nested
type.

4. Wrong nested features (too many) appeared inside the “container” features.

• If the relationship is many-to-many, make sure you are not using the same (denormalized)
view for both sides of the nesting.

Polymorphism

Polymorphism in this context refers to the ability of an attribute to have different forms. Depending on the
source value, it could be encoded with a specific structure, type, as an xlink:href reference, or not encoded
at all. To achieve this, we reuse feature chaining syntax and allow OCQL functions in the linkElement tag.
Read more about Feature Chaining, if you’re not familiar with the syntax.

Data-type polymorphism

You can use normal feature chaining to get an attribute to be encoded as a certain type. For example:

<AttributeMapping>
<targetAttribute>ex:someAttribute</targetAttribute>
<sourceExpression>

<OCQL>VALUE_ID</OCQL>
<linkElement>NumericType</linkElement>
<linkField>FEATURE_LINK</linkField>

</sourceExpression>
</AttributeMapping>
<AttributeMapping>

<targetAttribute>ex:someAttribute</targetAttribute>
<sourceExpression>

<OCQL>VALUE_ID</OCQL>
<linkElement>gsml:CGI_TermValue</linkElement>
<linkField>FEATURE_LINK</linkField>

</sourceExpression>
</AttributeMapping>

Note: NumericType here is a mappingName, whereas gsml:CGI_TermValue is a targetElement.

In the above example, ex:someAttribute would be encoded with the configuration in NumericType if the
foreign key matches the linkField. Both instances would be encoded if the foreign key matches the candi-
date keys in both linked configurations. Therefore this would only work for 0 to many relationships.

Functions can be used for single attribute instances. See useful functions for a list of commonly used func-
tions. Specify the function in the linkElement, and it would map it to the first matching FeatureTypeMap-
ping. For example:

<AttributeMapping>
<targetAttribute>ex:someAttribute</targetAttribute>
<sourceExpression>

<OCQL>VALUE_ID</OCQL>
<linkElement>

Recode(CLASS_TEXT, ’numeric’, ’NumericType’, ’literal’, ’gsml:CGI_TermValue’)
</linkElement>
<linkField>FEATURE_LINK</linkField>

</sourceExpression>

6.28. Application Schema Support 205

GeoServer User Manual, Release 2.1-RC4

<isMultiple>true</isMultiple>
</AttributeMapping>

The above example means, if the CLASS_TEXT value is ‘numeric’, it would link to ‘NumericType’ Fea-
tureTypeMapping, with VALUE_ID as foreign key to the linked type. It would require all the potential
matching types to have a common attribute that is specified in linkField. In this example, the linkField is
FEATURE_LINK, which is a fake attribute used only for feature chaining. You can omit the linkField and
OCQL if the FeatureTypeMapping being linked to has the same sourceType with the container type. This
would save us from unnecessary extra queries, which would affect performance. For example:

FeatureTypeMapping of the container type:

<FeatureTypeMapping>
<sourceDataStore>PropertyFiles</sourceDataStore>
<sourceType>PolymorphicFeature</sourceType>

FeatureTypeMapping of NumericType points to the same table:

<FeatureTypeMapping>
<mappingName>NumericType</mappingName>
<sourceDataStore>PropertyFiles</sourceDataStore>
<sourceType>PolymorphicFeature</sourceType>

FeatureTypeMapping of gsml:CGI_TermValue also points to the same table:

<FeatureTypeMapping>
<sourceDataStore>PropertyFiles</sourceDataStore>
<sourceType>PolymorphicFeature</sourceType>
<targetElement>gsml:CGI_TermValue</targetElement>

In this case, we can omit linkField in the polymorphic attribute mapping:

<AttributeMapping>
<targetAttribute>ex:someAttribute</targetAttribute>
<sourceExpression>

<linkElement>
Recode(CLASS_TEXT, ’numeric’, ’NumericType’, ’literal’, ’gsml:CGI_TermValue’)

</linkElement>
</sourceExpression>
<isMultiple>true</isMultiple>

</AttributeMapping>

Referential polymorphism

This is when an attribute is set to be encoded as an xlink:href reference on the top level. When the scenario
only has reference cases in it, setting a function in Client Property will do the job. E.g.:

<AttributeMapping>
<targetAttribute>ex:someAttribute</targetAttribute>
<ClientProperty>

<name>xlink:href</name>
<value>if_then_else(isNull(NUMERIC_VALUE), ’urn:ogc:def:nil:OGC:1.0:missing’, strConcat(’#’, NUMERIC_VALUE))</value>

</ClientProperty>
</AttributeMapping>

206 Chapter 6. Working with Data

GeoServer User Manual, Release 2.1-RC4

The above example means, if NUMERIC_VALUE is null, the attribute should be encoded as:

<ex:someAttribute xlink:href="urn:ogc:def:nil:OGC:1.0:missing">

Otherwise, it would be encoded as:

<ex:someAttribute xlink:href="#123">
where NUMERIC_VALUE = ’123’

However, this is not possible when we have cases where a fully structured attribute is also a possibility.
The toxlinkhref function can be used for this scenario. E.g.:

<AttributeMapping>
<targetAttribute>ex:someAttribute</targetAttribute>
<sourceExpression>

<linkElement>
if_then_else(isNull(NUMERIC_VALUE), toXlinkHref(’urn:ogc:def:nil:OGC:1.0:missing’),
if_then_else(lessEqualThan(NUMERIC_VALUE, 1000), ’numeric_value’, toXlinkHref(’urn:ogc:def:nil:OGC:1.0:missing’)))

</linkElement>
</sourceExpression>

</AttributeMapping>

The above example means, if NUMERIC_VALUE is null, the output would be encoded as:

<ex:someAttribute xlink:href="urn:ogc:def:nil:OGC:1.0:missing">

Otherwise, if NUMERIC_VALUE is less or equal than 1000, it would be encoded with attributes from
FeatureTypeMapping with ‘numeric_value’ mappingName. If NUMERIC_VALUE is greater than 1000,
it would be encoded as the first scenario.

Useful functions

if_then_else function Syntax:

if_then_else(BOOLEAN_EXPRESSION, value, default value)

• BOOLEAN_EXPRESSION: could be a Boolean column value, or a Boolean function

• value: the value to map to, if BOOLEAN_EXPRESSION is true

• default value: the value to map to, if BOOLEAN_EXPRESSION is false

Recode function Syntax:

Recode(EXPRESSION, key1, value1, key2, value2,...)

• EXPRESSION: column name to get values from, or another function

• key-n:

– key expression to map to value-n

– if the evaluated value of EXPRESSION doesn’t match any key, nothing would be encoded
for the attribute.

• value-n: value expression which translates to a mappingName or targetElement

6.28. Application Schema Support 207

GeoServer User Manual, Release 2.1-RC4

lessEqualThan Returns true if ATTRIBUTE_EXPRESSION evaluates to less or equal than
LIMIT_EXPRESSION.

Syntax:

lessEqualThan(ATTRIBUTE_EXPRESSION, LIMIT_EXPRESSION)

• ATTRIBUTE_EXPRESSION: expression of the attribute being evaluated.

• LIMIT_EXPRESSION: expression of the numeric value to be compared against.

lessThan Returns true if ATTRIBUTE_EXPRESSION evaluates to less than LIMIT_EXPRESSION.

Syntax:

lessThan(ATTRIBUTE_EXPRESSION, LIMIT_EXPRESSION)

• ATTRIBUTE_EXPRESSION: expression of the attribute being evaluated.

• LIMIT_EXPRESSION: expression of the numeric value to be compared against.

equalTo Compares two expressions and returns true if they’re equal.

Syntax:

equalTo(LHS_EXPRESSION, RHS_EXPRESSION)

isNull Returns a Boolean that is true if the expression evaluates to null.

Syntax:

isNull(EXPRESSION)

• EXPRESSION: expression to be evaluated.

toXlinkHref Special function written for referential polymorphism and feature chaining, not to be used
outside of linkElement. It infers that the attribute should be encoded as xlink:href.

Syntax:

toXlinkHref(XLINK_HREF_EXPRESSION)

• XLINK_HREF_EXPRESSION:

– could be a function or a literal

– has to be wrapped in single quotes if it’s a literal

Note:

• To get toXlinkHref function working, you need to declare xlink URI in the namespaces.

Other functions Please refer to Filter Function Reference.

208 Chapter 6. Working with Data

GeoServer User Manual, Release 2.1-RC4

Combinations You can combine functions, but it might affect performance. E.g.:

if_then_else(isNull(NUMERIC_VALUE), toXlinkHref(’urn:ogc:def:nil:OGC:1.0:missing’),
if_then_else(lessEqualThan(NUMERIC_VALUE, 1000), ’numeric_value’, toXlinkHref(’urn:ogc:def:nil:OGC:1.0:missing’)))

Note:

• When specifying a mappingName or targetElement as a value in functions, make sure they’re en-
closed in single quotes.

• Some functions have no null checking, and will fail when they encounter null.

• The workaround for this is to wrap the expression with isNull() function if null is known to exist in
the data set.

Null or missing value

To skip the attribute for a specific case, you can use Expression.NIL as a value in if_then_else or not include
the key in Recode function . E.g.:

if_then_else(isNull(VALUE), Expression.NIL, ’gsml:CGI_TermValue’)
means the attribute would not be encoded if VALUE is null.

Recode(VALUE, ’term_value’, ’gsml:CGI_TermValue’)
means the attribute would not be encoded if VALUE is anything but ’term_value’.

To encode an attribute as xlink:href that represents missing value on the top level, see Referential Polymor-
phism.

Any type

Having xs:anyType as the attribute type itself infers that it is polymorphic, since they can be encoded as
any type. If the type is pre-determined and would always be the same, we just need to specify targetAt-
tributeNode for inline mappings. E.g.:

<AttributeMapping>
<targetAttribute>om:result</targetAttribute>

<targetAttributeNode>gsml:MappedFeatureType<targetAttributeNode>
</AttributeMapping>
<AttributeMapping>

<targetAttribute>om:result/gsml:MappedFeature/gml:name</targetAttribute>
<sourceExpression>

<OCQL>NAME</OCQL>
</sourceExpression>

</AttributeMapping>

Using feature chaining, we just chain it as usual:

<AttributeMapping>
<targetAttribute>om:result</targetAttribute>
<sourceExpression>

<OCQL>LEX_D</OCQL>
<linkElement>gsml:MappedFeature</linkElement>
<linkField>gml:name</linkField>

6.28. Application Schema Support 209

GeoServer User Manual, Release 2.1-RC4

</sourceExpression>
</AttributeMapping>

If the type is conditional, the mapping style for such attributes is the same as any other polymorphic at-
tributes. E.g.:

<AttributeMapping>
<targetAttribute>om:result</targetAttribute>
<sourceExpression>

<linkElement>
Recode(NAME, Expression.Nil, toXlinkHref(’urn:ogc:def:nil:OGC::missing’),’numeric’,
toXlinkHref(strConcat(’urn:numeric-value::’, NUMERIC_VALUE)), ’literal’, ’TermValue2’)

</linkElement>
</sourceExpression>

</AttributeMapping>

Filters

Filters should work as usual, as long as the users know what they want to filter. For example, when an
attribute could be encoded as gsml:CGI_TermValue or gsml:CGI_NumericValue, users can run filters with
property names of:

• ex:someAttribute/gsml:CGI_TermValue/gsml:value to return matching attributes that are encoded
as gsml:CGI_TermValue and satisfy the filter.

• likewise, ex:someAttribute/gsml:CGI_NumericValue/gsml:principalValue should return matching
gsml:CGI_NumericValue attributes.

Another limitation is filtering attributes of an xlink:href attribute pointing to an instance outside of the
document.

Data Access Integration

This page assumes prior knowledge of Application Schema Support and Feature Chaining. To use feature
chaining, the nested features can come from any complex feature data access, as long as: * it has valid data
referred by the “container” feature type, * the data access is registered via DataAccessRegistry, * if FEA-
TURE_LINK is used as the link field, the feature types were created via ComplexFeatureTypeFactoryImpl

However, the “container” features must come from an application schema data access. The rest of this
article describes how we can create an application data access from an existing non-application schema
data access, in order to “chain” features. The input data access referred in this article is assumed to be the
non-application schema data access.

How to connect to the input data access

Configure the data store connection in “sourceDataStores” tag as usual, but also specify the additional “is-
DataAccess” tag. This flag marks that we want to get the registered complex feature source of the specified
“sourceType”, when processing the source data store. This assumes that the input data access is registered
in DataAccessRegistry upon creation, for the system to find it.

Example:

210 Chapter 6. Working with Data

GeoServer User Manual, Release 2.1-RC4

<sourceDataStores>
<DataStore>

<id>EarthResource</id>
<parameters>

<Parameter>
<name>directory</name>
<value>file:./</value>

</Parameter>
</parameters>
<isDataAccess>true</isDataAccess>

</DataStore>
</sourceDataStores>
...
<typeMappings>

<FeatureTypeMapping>
<sourceDataStore>EarthResource</sourceDataStore>

<sourceType>EarthResource</sourceType>
...

How to configure the mapping

Use “inputAttribute” in place of “OCQL” tag inside “sourceExpression”, to specify the input XPath expres-
sions.

Example:

<AttributeMapping>
<targetAttribute>gsml:classifier/gsml:ControlledConcept/gsml:preferredName</targetAttribute>
<sourceExpression>

<inputAttribute>mo:classification/mo:MineralDepositModel/mo:mineralDepositGroup</inputAttribute>
</sourceExpression>

</AttributeMapping>

How to chain features

Feature chaining works both ways for the re-mapped complex features. You can chain other features inside
these features, and vice-versa. The only difference is to use “inputAttribute” for the input XPath expres-
sions, instead of “OCQL” as mentioned above.

Example:

<AttributeMapping>
<targetAttribute>gsml:occurence</targetAttribute>
<sourceExpression>

<inputAttribute>mo:commodityDescription</inputAttribute>
<linkElement>gsml:MappedFeature</linkElement>
<linkField>gml:name[2]</linkField>

</sourceExpression>
<isMultiple>true</isMultiple>

</AttributeMapping>

6.28. Application Schema Support 211

GeoServer User Manual, Release 2.1-RC4

How to use filters

From the user point of view, filters are configured as per normal, using the mapped/output target attribute
XPath expressions. However, when one or more attributes in the expression is a multi-valued property,
we need to specify a function such as “contains_text” in the filter. This is because when multiple values
are returned, comparing them to a single value would only return true if there is only one value returned,
and it is the same value. Please note that the “contains_text” function used in the following example is not
available in Geoserver API, but defined in the database.

Example:

Composition is a multi-valued property:

<ogc:Filter>
<ogc:PropertyIsEqualTo>
<ogc:Function name="contains_text">

<ogc:PropertyName>gsml:composition/gsml:CompositionPart/gsml:proportion/gsml:CGI_TermValue/gsml:value</ogc:PropertyName>
<ogc:Literal>Olivine basalt, tuff, microgabbro, minor sedimentary rocks</ogc:Literal>

</ogc:Function>
<ogc:Literal>1</ogc:Literal>

</ogc:PropertyIsEqualTo>
</ogc:Filter>

Tutorial

This tutorial demonstrates how to configure two complex feature types using the app-schema plugin and
data from two property files.

GeoSciML

This example uses Geoscience Markup Language (GeoSciML) 2.0, a GML application schema:

“GeoSciML is an application schema that specifies a set of feature-types and supporting structures for
information used in the solid-earth geosciences.”

The tutorial defines two feature types:

1. gsml:GeologicUnit, which describes “a body of material in the Earth”.

2. gsml:MappedFeature, which describes the representation on a map of a feature, in this case
gsml:GeologicUnit.

Because a single gsml:GeologicUnit can be observed at several distinct locations on the Earth’s surface,
it can have a multivalued gsml:occurrence property, each being a gsml:MappedFeature.

Installation

• Install GeoServer as usual.

• Install the app-schema plugin (place the jar files in WEB-INF/lib).

• The tutorial configuration is a complete working GeoServer data directory. It includes all the schema
(XSD) files required to use GeoSciML 2.0, the data files, and the app-schema configuration files. There
are two ways you can get it:

212 Chapter 6. Working with Data

http://geosciml.org/geosciml/2.0/doc/

GeoServer User Manual, Release 2.1-RC4

1. Download geoserver-app-schema-tutorial-config.zip and unzip it into the folder that you will
use as your data directory.

2. Check it out from the AuScope subversion repository.

• If the data directory differs from the default, edit WEB-INF/web.xml to set GEOSERVER_DATA_DIR.
(Be sure to uncomment the section that sets GEOSERVER_DATA_DIR.)

• Perform any configuration required by your servlet container, and then start the servlet. For example,
if you are using Tomcat, configure a new context in server.xml and then restart Tomcat.

datastore.xml

Each data store configuration file datastore.xml specifies the location of a mapping file and triggers its
loading as an app-schema data source. This file should not be confused with the source data store, which
is specified inside the mapping file.

For gsml_GeologicUnit the file is workspaces/gsml/gsml_GeologicUnit/datastore.xml:

<dataStore>
<id>gsml_GeologicUnit_datastore</id>
<name>gsml_GeologicUnit</name>
<enabled>true</enabled>
<workspace>

<id>gsml_workspace</id>
</workspace>
<connectionParameters>

<entry key="namespace">urn:cgi:xmlns:CGI:GeoSciML:2.0</entry>
<entry key="url">file:workspaces/gsml/gsml_GeologicUnit/gsml_GeologicUnit.xml</entry>
<entry key="dbtype">app-schema</entry>

</connectionParameters>
</dataStore>

For gsml:MappedFeature the file is workspaces/gsml/gsml_MappedFeature/datastore.xml:

<dataStore>
<id>gsml_MappedFeature_datastore</id>
<name>gsml_MappedFeature</name>
<enabled>true</enabled>
<workspace>

<id>gsml_workspace</id>
</workspace>
<connectionParameters>

<entry key="namespace">urn:cgi:xmlns:CGI:GeoSciML:2.0</entry>
<entry key="url">file:workspaces/gsml/gsml_MappedFeature/gsml_MappedFeature.xml</entry>
<entry key="dbtype">app-schema</entry>

</connectionParameters>
</dataStore>

Note: Ensure that there is no whitespace inside an entry element.

Mapping files

Configuration of app-schema feature types is performed in mapping files:

• workspaces/gsml/gsml_GeologicUnit/gsml_GeologicUnit.xml

6.28. Application Schema Support 213

https://svn.auscope.org/subversion/AuScope/geoserver/config/geoserver-app-schema-tutorial-config/trunk/

GeoServer User Manual, Release 2.1-RC4

• workspaces/gsml/gsml_MappedFeature/gsml_MappedFeature.xml

Namespaces Each mapping file contains namespace prefix definitions:

<Namespace>
<prefix>gml</prefix>
<uri>http://www.opengis.net/gml</uri>

</Namespace>
<Namespace>

<prefix>gsml</prefix>
<uri>urn:cgi:xmlns:CGI:GeoSciML:2.0</uri>

</Namespace>
<Namespace>

<prefix>xlink</prefix>
<uri>http://www.w3.org/1999/xlink</uri>

</Namespace>

Only those namespace prefixes used in the mapping file need to be declared, so the mapping file for
gsml:GeologicUnit has less.

Source data store The data for this tutorial is contained in two property files:

• workspaces/gsml/gsml_GeologicUnit/gsml_GeologicUnit.properties

• workspaces/gsml/gsml_MappedFeature/gsml_MappedFeature.properties

Java Properties describes the format of property files.

For this example, each feature type uses an identical source data store configuration. This directory
parameter indicates that the source data is contained in property files named by their feature type, in the
same directory as the corresponding mapping file:

<sourceDataStores>
<DataStore>

<id>datastore</id>
<parameters>

<Parameter>
<name>directory</name>
<value>file:./</value>

</Parameter>
</parameters>

</DataStore>
</sourceDataStores>

See Data Stores for a description of how to use other types of data stores such as databases.

Catalog Both feature types use the same OASIS XML Catalog, given as a path relative to the mapping file:

<catalog>../../../schemas/catalog.xml</catalog>

• The catalog contains the the XSD schemas for GeoSciML 2.0 its dependencies.

• Note that some dependencies are imported as relative filesystem paths, and so are not resolved
through the OASIS Catalog, but are still present on the filesystem.

• GML 3.1.1 is also a dependency, but is not required because it is distributed with GeoServer.

• Use of a catalog is required because the implementation otherwise fails to honour relative imports.

214 Chapter 6. Working with Data

GeoServer User Manual, Release 2.1-RC4

Target types Both feature types are defined the same XML Schema, the top-level schema for GeoSciML 2.0.
This is specified in the targetTypes section. The type of the output feature is defined in targetElement
in the typeMapping section below‘‘:

<targetTypes>
<FeatureType>

<schemaUri>http://www.geosciml.org/geosciml/2.0/xsd/geosciml.xsd</schemaUri>
</FeatureType>

</targetTypes>

In this case the schema is published, but because the OASIS XML Catalog is used for schema resolution, a
private or modified schema in the catalog can be used if desired.

Mappings The typeMappings element begins with configuration elements. From the mapping file for
gsml:GeologicUnit:

<typeMappings>
<FeatureTypeMapping>

<sourceDataStore>datastore</sourceDataStore>
<sourceType>gsml_GeologicUnit</sourceType>
<targetElement>gsml:GeologicUnit</targetElement>

• The mapping starts with sourceDataStore, which gives the arbitrary identifier used above to name
the source of the input data in the sourceDataStores section.

• sourceType gives the name of the source simple feature type. In this case it is the simple feature
type gsml_GeologicUnit, sourced from the rows of the file gsml_GeologicUnit.properties
in the same directory as the mapping file.

• When working with databases sourceType is the name of a table or view. Database identifiers must
be lowercase for PostGIS or uppercase for Oracle Spatial.

• targetElement is the name of the output complex feature type.

gml:id mapping The first mapping sets the gml:id to be the feature id specified in the source property
file:

<AttributeMapping>
<targetAttribute>

gsml:GeologicUnit
</targetAttribute>
<idExpression>

<OCQL>getId()</OCQL>
</idExpression>

</AttributeMapping>

• targetAttribute is the XPath to the element for which the mapping applies, in this case, the top-
level feature type.

• idExpression is a special form that can only be used to set the gml:id on a feature. For database
sources, getId() will synthesise an id from the table or view name, a dot “.”, and the primary key
of the table. If this is not desirable, any other field or CQL expression can be used, if it evaluates to an
NCName.

6.28. Application Schema Support 215

http://www.w3.org/TR/1999/REC-xml-names-19990114/#NT-NCName

GeoServer User Manual, Release 2.1-RC4

Ordinary mapping Most mappings consist of a target and source. Here is one from
gsml:GeologicUnit:

<AttributeMapping>
<targetAttribute>

gml:description
</targetAttribute>

<sourceExpression>
<OCQL>DESCRIPTION</OCQL>

</sourceExpression>
</AttributeMapping>

• In this case, the value of gml:description is just the value of the DESCRIPTION field in the prop-
erty file.

• For a database, the field name is the name of the column (the table/view is set in sourceType above).
Database identifiers must be lowercase for PostGIS or uppercase for Oracle Spatial.

• CQL expressions can be used to calculate content. Use caution because queries on CQL-calculated
values prevent the construction of efficient SQL queries.

• Source expressions can be CQL literals, which are single-quoted.

Client properties In addition to the element content, a mapping can set one or more “client properties”
(XML attributes). Here is one from gsml:MappedFeature:

<AttributeMapping>
<targetAttribute>

gsml:specification
</targetAttribute>
<ClientProperty>

<name>xlink:href</name>
<value>GU_URN</value>

</ClientProperty>
</AttributeMapping>

• This mapping leaves the content of the gsml:specification element empty but sets an
xlink:href attribute to the value of the GU_URN field.

• Multiple ClientProperty mappings can be set.

In this example from the mapping for gsml:GeologicUnit both element content and an XML attribute
are provided:

<AttributeMapping>
<targetAttribute>

gml:name[1]
</targetAttribute>

<sourceExpression>
<OCQL>NAME</OCQL>

</sourceExpression>
<ClientProperty>

<name>codeSpace</name>
<value>’urn:x-test:classifierScheme:TestAuthority:GeologicUnitName’</value>

</ClientProperty>
</AttributeMapping>

• The codespace XML attribute is set to a fixed value by providing a CQL literal.

216 Chapter 6. Working with Data

GeoServer User Manual, Release 2.1-RC4

• There are multiple mappings for gml:name, and the index [1] means that this mapping targets the
first.

targetAttributeNode If the type of a property is abstract, a targetAttributeNode mapping must be
used to specify a concrete type. This mapping must occur before the mapping for the content of the prop-
erty.

Here is an example from the mapping file for gsml:MappedFeature:

<AttributeMapping>
<targetAttribute>gsml:positionalAccuracy</targetAttribute>
<targetAttributeNode>gsml:CGI_TermValuePropertyType</targetAttributeNode>

</AttributeMapping>
<AttributeMapping>

<targetAttribute>gsml:positionalAccuracy/gsml:CGI_TermValue/gsml:value</targetAttribute>
<sourceExpression>

<OCQL>’urn:ogc:def:nil:OGC:missing’</OCQL>
</sourceExpression>
<ClientProperty>

<name>codeSpace</name>
<value>’urn:ietf:rfc:2141’</value>

</ClientProperty>
</AttributeMapping>

• gsml:positionalAccuracy is of type gsml:CGI_TermValuePropertyType, which is ab-
stract, so must be mapped to its concrete subtype gsml:CGI_TermValuePropertyType with a
targetAttributeNode mapping before its contents can be mapped.

• This example also demonstrates that mapping can be applied to nested properties to arbitrary depth.
This becomes unmanageable for deep nesting, where feature chaining is preferred.

Feature chaining In feature chaining, one feature type is used as a property of an enclosing feature type,
by value or by reference:

<AttributeMapping>
<targetAttribute>

gsml:occurrence
</targetAttribute>
<sourceExpression>

<OCQL>URN</OCQL>
<linkElement>gsml:MappedFeature</linkElement>
<linkField>gml:name[2]</linkField>

</sourceExpression>
<isMultiple>true</isMultiple>

</AttributeMapping>

• In this case from the mapping for gsml:GeologicUnit, we specify a mapping for its
gsml:occurrence.

• The URN field of the source gsml_GeologicUnit simple feature is use as the “foreign key”, which
maps to the second gml:name in each gsml:MappedFeature.

• Every gsml:MappedFeature with gml:name[2] equal to the URN of the gsml:GeologicUnit
under construction is included as a gsml:occurrence property of the gsml:GeologicUnit (by
value).

6.28. Application Schema Support 217

GeoServer User Manual, Release 2.1-RC4

WFS response

When GeoServer is running, test app-schema WFS in a web browser. If GeoServer is listening on
localhost:8080 you can query the two feature types using these links:

• http://localhost:8080/geoserver/wfs?request=GetFeature&typeName=gsml:GeologicUnit

• http://localhost:8080/geoserver/wfs?request=GetFeature&typeName=gsml:MappedFeature

gsml:GeologicUnit

• The WFS response for gsml:GeologicUnit contains two features corresponding to the two rows in
gsml_GeologicUnit.properties. The response document has been manually pretty-printed, so
contains more whitespace than the original GeoServer response, but is otherwise a complete WFS
response.

• Feature chaining has been used to construct the multivalued property gsml:occurrence of
gsml:GeologicUnit. This property is a gsml:MappedFeature. The WFS response for
gsml:GeologicUnit combines the output of both feature types into a single response. The first
gsml:GeologicUnit has two gsml:occurrence properties, while the second has one. The rela-
tionships between the feature instances are data driven.

Note: The data in this tutorial is fictitious. Some of the text and numbers have been taken from real data,
but have been modified to the extent that they have no real-world meaning.

218 Chapter 6. Working with Data

http://localhost:8080/geoserver/wfs?request=GetFeature\&typeName=gsml:GeologicUnit
http://localhost:8080/geoserver/wfs?request=GetFeature\&typeName=gsml:MappedFeature

CHAPTER 7

Filtering in GeoServer

Filtering allows to identify features that satisfy a specific set of conditions. This can be used to reduce the
amount of data returned by WFS or to apply different symbolization on a thematic map.

7.1 GeoServer supported filter languages

Data filtering in GeoServer is based on the concepts found in the OGC Filter Encoding Specification, which
we suggest the reader to get familiar with.

In particular GeoServer accepts filters encoded in three different languages:

• OGC Filter encoding specification v 1.0, used in WFS 1.0 and SLD 1.0

• OGC Filter encoding specification v 1.1, used in WFS 1.1

• CQL, Catalog Query Language, a plain text language created for the OGC Catalog specification and
adapted to be a general and easy to use filtering mechanism.

• ECQL, Extended CQL, an extension to CQL that allows to express the same filters OGC Filter 1.1 can
encode. A quick CQL and ECQL is also available in this guide that shows examples of both CQL and
ECQL.

We suggest to look into the respective specifications for details.

7.2 Filter functions

The OGC Filter encoding specification contains a generic concept, the filter function.

A filter function is a function, with arguments, that can be called inside of a filter or, more generically, an
expression, to perform specific calculations: as such it can be useful when building WFS filters or SLD
style sheets. A filter function can be anything a trigonometric function, a string formatting one, a geometry
buffer.

The filter specification does not mandate specific functions, so while the syntax to call a function is uniform,
any server is free to provide whatever function it wants, so the actual invocation will work only against
specific software.

219

http://www.opengeospatial.org/standards/filter
http://portal.opengeospatial.org/files/?artifact_id=1171
http://portal.opengeospatial.org/files/?artifact_id=8340
http://portal.opengeospatial.org/files/?artifact_id=3843
http://docs.codehaus.org/display/GEOTOOLS/ECQL+Parser+Design

GeoServer User Manual, Release 2.1-RC4

Here are a couple of examples on function usage, the first is about WFS filtering, the second a way to use
functions in SLD to get richer rendering.

7.2.1 WFS filtering example

Let’s assume we have a WFS feature type whose geometry field, geom, can contain any kind of geometry.

For a certain application we need to extract only the features whose geometry is a simple point or a multi
point. This cannot be achieved with a fully portable filter, but it can be done using a GeoServer specific
filter function named geometryType. Here is how:

<wfs:GetFeature service="WFS" version="1.0.0"
outputFormat="GML2"
xmlns:wfs="http://www.opengis.net/wfs"
xmlns:ogc="http://www.opengis.net/ogc"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.opengis.net/wfs

http://schemas.opengis.net/wfs/1.0.0/WFS-basic.xsd">
<wfs:Query typeName="sf:archsites">
<ogc:Filter>

<ogc:PropertyIsEqualTo>
<ogc:Function name="geometryType">

<ogc:PropertyName>geom</ogc:PropertyName>
</ogc:Function>
<ogc:Literal>Point</ogc:Literal>

</ogc:PropertyIsEqualTo>
</ogc:Filter>
</wfs:Query>

</wfs:GetFeature>

7.2.2 SLD formatting example

We want to include elevation labels in a contour map. The label is stored as a floating point, and the
resulting labelling will be something may be something like “150.0” or “149.999999”. We want to avoid that
and get 150 instead. To achieve this result we can use the numberFormat filter function:

...
<TextSymbolizer>

<Label>
<ogc:Function name="numberFormat">

<ogc:Literal>##</ogc:Literal>
<ogc:PropertyName>ELEVATION</ogc:PropertyName>

</ogc:Function>
</Label>
...

</TextSymbolizer>
...

7.2.3 Performance implications

Using filter functions in SLD symbolizer expressions does not have significant overhead, unless the function
is performing some very heavy computation.

220 Chapter 7. Filtering in GeoServer

GeoServer User Manual, Release 2.1-RC4

However, using them in WFS or SLD filtering can take a very visible toll: this is usually because filter
functions are not recognized by the native encoders, and thus the functions are not used inside the primary
filters, and are performed in memory instead.

For example, given a filter like BBOX(geom,-10,30,20,45) and geometryType(geom) = ’Point’
most data stores will split the filter into two separate parts, one, the bounding box filter, is actually used
as a primary filter (e.g., encoded in SQL) whilst the geometry function part will be executed in memory on
top of the results coming from the primary filter.

7.3 Filter Function Reference

This page contains a reference to filter functions that can be used in WFS filtering or in SLD expressions. If
a function reported by the WFS capabilities is not available in this list it might either mean that the function
cannot actually be used for the above purposes, or that it’s new and has not been documented still. Ask for
details on the user mailing list.

Unless otherwise specified none of the filter functions in this references is understood natively by the data
stores, and as a result all expressions using them will be evaluated in memory.

7.3.1 Function argument type reference

Type Description
Dou-
ble

Floating point number, 8 bytes, IEEE 754. ranging from 4.94065645841246544e-324d to
1.79769313486231570e+308d

Float Floating point number, 4 bytes, IEEE 754. ranging from 1.40129846432481707e-45 to
3.40282346638528860e+38. Smaller range and less accurate than Double.

Inte-
ger

Integer number, ranging from -2,147,483,648 to 2,147,483,647

Long Integer number, ranging from -9,223,372,036,854,775,808 to +9,223,372,036,854,775,807
Num-
ber

Can be any type of number

String A sequence of characters
Times-
tamp

Date and time information

7.3. Filter Function Reference 221

GeoServer User Manual, Release 2.1-RC4

7.3.2 Comparison and control Functions

Name Arguments Description
between num:Number,

low:Number,‘‘high‘‘:Number
returns true if low <= num <= high

equalTo a:Object, b:Object Can be used to compare for equality two numbers, two strings,
two dates, and so on

greaterEqualThan x:Object, y:Object Returns true if x >= y. Parameters can be either numbers or
strings (in the second case lexicographic ordering is used)

greaterThan x:Object, y:Object Returns true if x > y. Parameters can be either numbers or
strings (in the second case lexicographic ordering is used)

if_the_else condition:Boolean,
x:Object, y:
Object

Returns x if the condition is true, y otherwise

in10, in9, in8,
in7, in6, in5,
in4, in3, in2

candidate:Object,
v1:Object, ...,
v9:Object

Returns true if candidate is equal to one of the v1, ..., v9
values. Use the appropriate function name depending on how
many arguments you need to pass.

isLike string:String,
pattern:String

Returns true if the string matches the specified pattern. For the
full syntax of the pattern specification see the Java Pattern class
javadocs

isNull obj:Object Returns true the passed parameter is null, false otherwise
lessThan x:Object, y:Object Returns true if x < y. Parameters can be either numbers or

strings (in the second case lexicographic ordering is used
lessThanEqual x:Object, y:Object Returns true if x <= y. Parameters can be either numbers or

strings (in the second case lexicographic ordering is used
not bool:Boolean Returns the negation of bool
notEqual x:Object, y:Object Returns true if x and y are equal, false otherwise

7.3.3 Feature functions

Name Arguments Description
id feature:Feature returns the identifier of the feature
PropertyExists f:Feature, propertyName:String Returns true if f has a property named propertyName

7.3.4 Geometric Functions

Most of the geometric function listed below refer to geometry relationship, to get more information about
the meaning of each spatial relationship consult the OGC Simple Feature Specification for SQL

Name Arguments Description
Area geometry:Geometry The area of the specified geometry. Works in a Cartesian plane, the result will be in the same unit of measure as the geometry coordinates (which also means the results won’t make any sense for geographic data)
boundary geometry:Geometry Returns the boundary of a geometry
boundaryDimension geometry:Geometry Returns the number of dimensions of the geometry boundary
buffer geometry:Geometry, distance:Double Returns the buffered area around the geometry using the specified distance
bufferWithSegments geometry:Geometry, distance:Double, segments:Integer Returns the buffered area around the geometry using the specified distance and using the specified number of segments to represent a quadrant of a circle.
bufferWithSegments geometry:Geometry, distance:Double, segments:Integer Returns the buffered area around the geometry using the specified distance and using the specified number of segments to represent a quadrant of a circle.
centroid geometry:Geometry Returns the centroid of the geometry. Can be often used as a label point for polygons, though there is no guarantee it will actually lie inside the geometry
contains a:Geometry, b:Geometry Returns true if the geometry a contains b
convexHull geometry:Geometry Returns the convex hull of the specified geometry
crosses a:Geometry, b:Geometry Returns true if a crosses b
difference a:Geometry, b:Geometry Returns all the points that sit in a but not in b

Continued on next page

222 Chapter 7. Filtering in GeoServer

http://java.sun.com/javase/6/docs/api/java/util/regex/Pattern.html
http://java.sun.com/javase/6/docs/api/java/util/regex/Pattern.html
http://www.opengeospatial.org/standards/sfs

GeoServer User Manual, Release 2.1-RC4

Table 7.1 – continued from previous page
dimension a:Geometry Returns the dimension of the specified geometry
disjoint a:Geometry, b:Geometry Returns true if the two geometries are disjoint, false otherwise
distance a:Geometry, b:Geometry Returns the euclidean distance between the two geometries
endPoint line:LineString Returns the end point of the line
envelope geometry:geometry Returns the polygon representing the envelope of the geometry, that is, the minimum rectangle with sides parallels to the axis containing it
equalsExact a:Geometry, b:Geometry Returns true if the two geometries are exactly equal, same coordinates in the same order
equalsExactTolerance a:Geometry, b:Geometry, tol:Double Returns true if the two geometries are exactly equal, same coordinates in the same order, allowing for a tol distance in the corresponding points
exteriorRing poly:Polygon Returns the exterior ring of the specified polygon
geometryType geometry:Geometry Returns the type of the geometry as a string. May be Point, MultiPoint, LineString, LinearRing, MultiLineString, Polygon, MultiPoligon, GeometryCollection
geomFromWKT wkt:String Returns the Geometry represented in the Well Known Text format contained in the wkt parameter
geomLength geometry:Geometry Returns the length/perimeter of this geometry (computed in Cartesian space)
getGeometryN collection:GeometryCollection, n:Integer Returns the n-th geometry inside the collection
getX p:Point Returns the x ordinate of p
getY p:Point Returns the y ordinate of p
getZ p:Point Returns the z ordinate of p
interiorPoint geometry:Geometry Returns a point that is either interior to the geometry, when possible, or sitting on its boundary, otherwise
interiorRingN polyg:Polygon, n:Integer Returns the n-th interior ring of the polygon
intersection a:Geometry, b:Geometry Returns the intersection between a and b. The intersection result can be anything including a geometry collection of heterogeneous, if the result is empty, it will be represented by an empty collection.
intersects a:Geometry, b:Geometry Returns true if a intersects b
isClosed line: LineString Returns true if line forms a closed ring, that is, if the first and last coordinates are equal
isEmpty geometry:Geometry Returns true if the geometry does not contain any point (typical case, an empty geometry collection)
isometric geometry:Geometry, extrusion:Double Returns a multi-polygon containing the isometric extrusions of all segments part of the original geometry. The extrusion distance is extrusion and it’s assume to be expressed in the same unit as the geometry coordinates. Can be used to get a cheap pseudo-3d map effect
isRing line:LineString Returns true if the line is actually a closed ring (equivalent to isRing(line) and isSimple(line))
isSimple line:LineString Returns true if the geometry self intersects only at boundary points
isValid geometry: Geometry Returns true if the geometry is topologically valid (rings are closed, holes are inside the hull, and so on)
isWithinDistance a: Geometry, b:Geometry, distance: Double Returns true if the distance between a and b is less than distance (measured as an euclidean distance)
numGeometries collection: GeometryCollection Returns the number of geometries contained in the geometry collection
numInteriorRing poly: Polygon Returns the number of interior rings (holes) inside the specified polygon
numPoint geometry: Geometry Returns the number of points (vertexes) contained in geometry
offset geometry: Geometry, offsetX:Double, offsetY:Double Offsets all points in a geometry by the specified X and Y offsets. Offsets are working in the same coordinate system as the geometry own coordinates.
overlaps a: Geometry, b:Geometry Returns true a overlaps with b
pointN geometry: Geometry, n:Integer Returns the n-th point inside the specified geometry
relate a: Geometry, b:Geometry Returns the DE-9IM intersection matrix for a and b
relatePattern a: Geometry, b:Geometry, pattern:String Returns true if the DE-9IM intersection matrix for a and b matches the specified pattern
startPoint line: LineString Returns the starting point of the specified geometry
symDifference a: Geometry, b:Geometry Returns the symmetrical difference between a and b (all points that are inside a or b, but not both)
touches a: Geometry, b: Geometry Returns true if a touches b according to the SQL simple feature specification rules
toWKT geometry: Geometry Returns the WKT representation of geometry
union a: Geometry, b:Geometry Returns the union of a and b (the result may be a geometry collection)
vertices geom: Geometry Returns a multi-point made with all the vertices of geom
within a: Geometry, b:Geometry Returns true is fully contained inside b

7.3. Filter Function Reference 223

GeoServer User Manual, Release 2.1-RC4

224 Chapter 7. Filtering in GeoServer

GeoServer User Manual, Release 2.1-RC4

7.3.5 Math Functions

Name Arguments Description
abs value:Integer The absolute value of the specified Integer value
abs_2 value:Long The absolute value of the specified Long value
abs_3 value:Float The absolute value of the specified Float value
abs_4 value:Double The absolute value of the specified Double value
acos angle:Double Returns the arc cosine of an angle expressed in radians, in the

range of 0.0 through PI
asin angle:Double Returns the arc sine of an angle expressed in radians, in the range

of -PI / 2 through PI / 2
atan angle:Double Returns the arc tangent of an angle, in the range of -PI/2 through

PI/2
atan2 x:Double, y:Double Converts rectangular coordinates (x, y) to polar (r, theta).
ceil x: Double Returns the smallest (closest to negative infinity) double value that

is greater than or equal to the argument and is equal to a
mathematical integer.

cos angle: Double Returns the cosine of an angle expressed in radians
dou-
ble2bool

x: Double Returns true if the number is zero, false otherwise

exp x: Double Returns Euler’s number raised to the power of x
floor x: Double Returns the largest (closest to positive infinity) value that is less

than or equal to the argument and is equal to a mathematical integer
IEEERe-
mainder

x: Double, y:Double Computes the remainder operation on two arguments as prescribed
by the IEEE 754 standard

int2bbool x: Integer Returns true if the number is zero, false otherwise
int2ddoublex: Integer Converts the number to Double
log x: Integer Returns the natural logarithm (base e) of x
max,
max_3,
max_4

x1: Double,
x2:Double,
x3:Double,
x4:Double

Returns the maximum between x1, ..., x4

min,
min_3,
min_4

x1: Double,
x2:Double,
x3:Double,
x4:Double

Returns the minimum between x1, ..., x4

pi None Returns an approximation of pi, the ratio of the circumference of a
circle to its diameter

pow base:Double,
exponent:Double

Returns the value of base raised to the power of exponent

random None Returns a Double value with a positive sign, greater than or equal to
0.0 and less than 1.0. Returned values are chosen
pseudo-randomly with (approximately) uniform distribution from
that range.

rint x:Double Returns the Double value that is closest in value to the argument
and is equal to a mathematical integer. If two double values that are
mathematical integers are equally close, the result is the integer
value that is even.

round_2 x:Double Same as round, but returns a Long
round x:Double Returns the closest Integer to the argument. The result is rounded to

an integer by adding 1/2, taking the floor of the result, and casting
the result to type Integer. In other words, the result is equal to the
value of the expression (int)floor(a + 0.5)

round-
Double

x:Double Returns the closest Long to the argument

tan angle:Double Returns the trigonometric tangent of angle
toDe-
grees

angle:Double Converts an angle expressed in radians into degrees

toRadi-
ans

angle:Double Converts an angle expressed in radians into degrees

7.3. Filter Function Reference 225

GeoServer User Manual, Release 2.1-RC4

7.3.6 String functions

Name Arguments Description
strCapital-
ize (since
2.0.2)

sentence:String Fully capitalizes the sentence. For example, “HoW aRe YOU?” will
be turned into “How Are You?”

strConcat a:String, b:String Concatenates the two strings into one
strEndsWith string:String,

suffix:String
Returns true if string ends with suffix

strEqual-
sIgnore-
Case

a:String, b:String Returns true if the two strings are equal ignoring case
considerations

strIndexOf string:String,
substring:String

Returns the index within this string of the first occurrence of the
specified substring, or -1 if not found

strLastIn-
dexOf

string:String,
substring:String

Returns the index within this string of the last occurrence of the
specified substring, or -1 if not found

strLength string:String Returns the string length
strMatches string:String,

pattern:String
Returns true if the string matches the specified regular expression.
For the full syntax of the pattern specification see the Java Pattern
class javadocs

strReplace string:String,
pattern:String

Returns true if the string matches the specified regular expression.
For the full syntax of the pattern specification see the Java Pattern
class javadocs

strStartsWith string:String,
prefix:String

Returns true if string starts with prefix

strSub-
string

string:String,
begin:Integer,
end:Integer

Returns a new string that is a substring of this string. The substring
begins at the specified begin and extends to the character at index
endIndex - 1 (indexes are zero-based).

strSub-
stringStart

string:String,
begin:Integer

Returns a new string that is a substring of this string. The substring
begins at the specified begin and extends to the last character of
the string

strToLow-
erCase

string:String Returns the lower case version of the string

strToUp-
perCase

string:String Returns the upper case version of the string

strTrim string:String Returns a copy of the string, with leading and trailing white space
omitted

226 Chapter 7. Filtering in GeoServer

http://java.sun.com/javase/6/docs/api/java/util/regex/Pattern.html
http://java.sun.com/javase/6/docs/api/java/util/regex/Pattern.html
http://java.sun.com/javase/6/docs/api/java/util/regex/Pattern.html
http://java.sun.com/javase/6/docs/api/java/util/regex/Pattern.html

GeoServer User Manual, Release 2.1-RC4

7.3.7 Parsing and formatting functions

Name Arguments Description
date-
Format

date:Timestamp,
format:String

Formats the specified date according to the provided format. The format
syntax can be found in the Java SimpleDateFormat javadocs

dateParsedateString:String,
format:String

Parses a date from a dateString formatted according to the format
specification. The format syntax can be found in the Java
SimpleDateFormat javadocs

num-
ber-
Format

number:Double,
format:String

Formats the number according to the specified format. The format
syntax can be found in the Java DecimalFormat javadocs

parse-
Boolean

boolean:String Parses a string into a boolean. The empty string, f, 0.0 and 0 are
considered false, everything else is considered true.

parse-
Dou-
ble

number:String Parses a string into a double. The number can be expressed in normal or
scientific form.

par-
seInt

number:String Parses a string into an integer.

parse-
Long

number:String Parses a string into a long integer

7.3. Filter Function Reference 227

http://java.sun.com/javase/6/docs/api/java/text/SimpleDateFormat.html
http://java.sun.com/javase/6/docs/api/java/text/SimpleDateFormat.html
http://java.sun.com/javase/6/docs/api/java/text/SimpleDateFormat.html
http://java.sun.com/javase/6/docs/api/java/text/DecimalFormat.html

GeoServer User Manual, Release 2.1-RC4

228 Chapter 7. Filtering in GeoServer

CHAPTER 8

Styling

This section discusses the styling of geospatial data served through GeoServer.

8.1 Introduction to SLD

Geospatial data has no intrinsic visual component. In order to see data, it must be styled. This means
to specify color, thickness, and other visible attributes. In GeoServer, this styling is accomplished using a
markup language called Styled Layer Descriptor, or SLD for short. SLD is an XML-based markup language
and is very powerful, though it can be intimidating. This page will give a basic introduction to what one
can do with SLD and how GeoServer handles it.

Note: Since GeoServer uses SLD exclusively for styling, the terms “SLD” and “style” will often be used
interchangeably.

8.1.1 Types of styling

Data that GeoServer can serve consists of three classes of shapes: Points, lines, and polygons. Lines (one
dimensional shapes) are the simplest, as they have only the edge to style (also known as “stroke”). Poly-
gons, two dimensional shapes, have an edge and an inside (also known as a “fill”), both of which can be
styled differently. Points, even though they lack dimension, have both an edge and a fill (not to mention a
size) that can be styled. For fills, color can be specified; for strokes, color and thickness can be specified.

More advanced styling is possible than just color and thickness. Points can be specified with well-known
shapes like circles, squares, stars, and even custom graphics or text. Lines can be styled with a dash styles
and hashes. Polygons can be filled with a custom tiled graphics. Styles can be based on attributes in the
data, so that certain features are styled differently. Text labels on features are possible as well. Features can
be styled based on zoom level, with the size of the feature determining how it is displayed. The possibilities
are vast.

8.1.2 Style metadata

8.1.3 GeoServer and SLD

Every layer (featuretype) registered with GeoServer needs to have at least one style associated with it.
GeoServer comes bundled with a few basic styles, and any number of new styles can be added. It is

229

http://www.opengeospatial.org/standards/sld

GeoServer User Manual, Release 2.1-RC4

possible to change any layer’s associated style at any time in the Layers page of the Web Administration
Interface. When adding a layer and a style to GeoServer at the same time, the style should be added first, so
that the new layer can be associated with the style immediately. You can add a style in the Styles menu of
the Web Administration Interface.

8.1.4 Definitions

Symbolizer

Rule

FeatureTypeStyle

8.1.5 A basic style

This SLD takes a layer that contains points, and styles them as red circles with a size of 6 pixels. (This is the
first example in the Points section of the SLD Cookbook.)

1 <?xml version="1.0" encoding="ISO-8859-1"?>
2 <StyledLayerDescriptor version="1.0.0"
3 xsi:schemaLocation="http://www.opengis.net/sld StyledLayerDescriptor.xsd"
4 xmlns="http://www.opengis.net/sld"
5 xmlns:ogc="http://www.opengis.net/ogc"
6 xmlns:xlink="http://www.w3.org/1999/xlink"
7 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
8 <NamedLayer>
9 <Name>Simple point</Name>

10 <UserStyle>
11 <Title>GeoServer SLD Cook Book: Simple point</Title>
12 <FeatureTypeStyle>
13 <Rule>
14 <PointSymbolizer>
15 <Graphic>
16 <Mark>
17 <WellKnownName>circle</WellKnownName>
18 <Fill>
19 <CssParameter name="fill">#FF0000</CssParameter>
20 </Fill>
21 </Mark>
22 <Size>6</Size>
23 </Graphic>
24 </PointSymbolizer>
25 </Rule>
26 </FeatureTypeStyle>
27 </UserStyle>
28 </NamedLayer>
29 </StyledLayerDescriptor>

Don’t let the lengthy nature of this simple example intimidate; only a few lines are really important to
understand. Line 14 states that we are using a “PointSymbolizer”, a style for point data. Line 17 states
that we are using a “well known name”, a circle, to style the points. There are many well known names for
shapes such as “square”, “star”, “triangle”, etc. Lines 18-20 states to fill the shape with a color of #FF0000
(red). This is an RGB color code, written in hexadecimal, in the form of #RRGGBB. Finally, line 22 specifies
that the size of the shape is 6 pixels in width. The rest of the structure contains metadata about the style,
such as Name/Title/Abstract.

230 Chapter 8. Styling

GeoServer User Manual, Release 2.1-RC4

Many more examples can be found in the SLD Cookbook.

Note: You will find that some tags have prefixes, such as ogc: in front of them. The reason for this is
because they are XML namespaces. In the tag on lines 2-7, there are two XML namespaces, one called
xmlns, and one called xmlns:ogc. Tags corresponding to the first namespace do not need a prefix, but
tags corresponding to the second require a prefix of ogc:. It should be pointed out that the name of the
namespaces are not important: The first namespace could be xmlns:sld (as it often is) and then all of
the tags in this example would require an sld: prefix. The important part is that the namespaces need to
match the tags.

8.1.6 Troubleshooting

SLD is a type of programming language, not unlike creating a web page or building a script. As such, prob-
lems may arise that may require troubleshooting. When adding a style into GeoServer, it is automatically
checked for validation with the OGC SLD specification (although that may be bypassed), but it will not be
checked for errors. It is very easy to have syntax errors creep into a valid SLD. Most of the time this will
result in a map displaying no features (a blank map), but sometimes errors will prevent the map from even
loading at all.

The easiest way to fix errors in an SLD is to try to isolate the error. If the SLD is long and incorporates many
different rules and filters, try temporarily removing some of them to see if the errors go away.

To minimize errors when creating the SLD, it is recommended to use a text editor that is designed to work
with XML. Editors designed for XML can make finding and removing errors much easier by providing
syntax highlighting and (sometimes) built-in error checking.

8.2 SLD Cookbook

The SLD Cookbook is a collection of SLD “recipes” for creating various types of map styles. Wherever
possible, each example is designed to show off a single SLD feature so that code can be copied from the
examples and adapted when creating SLDs of your own. While not an exhaustive reference like the SLD
Reference or the OGC SLD 1.0 specification the SLD Cookbook is designed to be a practical reference, show-
ing common style templates that are easy to understand.

The SLD Cookbook is divided into four sections: the first three for each of the vector types (points, lines, and
polygons) and the fourth section for rasters. Each example in every section contains a screenshot showing
actual GeoServer WMS output, a snippet of the SLD code for reference, and a link to download the full
SLD.

Each section uses data created especially for the SLD Cookbook, with shapefiles for vector data and Geo-
TIFFs for raster data. The projection for data is EPSG:4326. All files can be easily loaded into GeoServer in
order to recreate the examples.

Data Type Shapefile
Point sld_cookbook_point.zip
Line sld_cookbook_line.zip
Polygon sld_cookbook_polygon.zip
Raster sld_cookbook_raster.zip

8.2.1 Points

While points are seemingly the simplest type of shape, possessing only position and no other dimensions,
there are many different ways that a point can be styled in SLD.

8.2. SLD Cookbook 231

http://www.opengeospatial.org/standards/sld

GeoServer User Manual, Release 2.1-RC4

Warning: The code examples shown on this page are not the full SLD code, as they omit the SLD
header and footer information for the sake of brevity. Please use the links to download the full SLD for
each example.

Example points layer

The points layer used for the examples below contains name and population information for the major
cities of a fictional country. For reference, the attribute table for the points in this layer is included below.

fid (Feature ID) name (City name) pop (Population)
point.1 Borfin 157860
point.2 Supox City 578231
point.3 Ruckis 98159
point.4 Thisland 34879
point.5 Synopolis 24567
point.6 San Glissando 76024
point.7 Detrania 205609

Download the points shapefile

Simple point

This example specifies points be styled as red circles with a diameter of 6 pixels.

Figure 8.1: Simple point

232 Chapter 8. Styling

GeoServer User Manual, Release 2.1-RC4

Code

View and download the full “Simple point” SLD

1 <FeatureTypeStyle>
2 <Rule>
3 <PointSymbolizer>
4 <Graphic>
5 <Mark>
6 <WellKnownName>circle</WellKnownName>
7 <Fill>
8 <CssParameter name="fill">#FF0000</CssParameter>
9 </Fill>

10 </Mark>
11 <Size>6</Size>
12 </Graphic>
13 </PointSymbolizer>
14 </Rule>
15 </FeatureTypeStyle>

Details

There is one <Rule> in one <FeatureTypeStyle> for this SLD, which is the simplest possible situation.
(All subsequent examples will contain one <Rule> and one <FeatureTypeStyle> unless otherwise spec-
ified.) Styling points is accomplished via the <PointSymbolizer> (lines 3-13). Line 6 specifies the shape
of the symbol to be a circle, with line 8 determining the fill color to be red (#FF0000). Line 11 sets the size
(diameter) of the graphic to be 6 pixels.

Simple point with stroke

This example adds a stroke (or border) around the Simple point, with the stroke colored black and given a
thickness of 2 pixels.

Code

View and download the full “Simple point with stroke” SLD

1 <FeatureTypeStyle>
2 <Rule>
3 <PointSymbolizer>
4 <Graphic>
5 <Mark>
6 <WellKnownName>circle</WellKnownName>
7 <Fill>
8 <CssParameter name="fill">#FF0000</CssParameter>
9 </Fill>

10 <Stroke>
11 <CssParameter name="stroke">#000000</CssParameter>
12 <CssParameter name="stroke-width">2</CssParameter>
13 </Stroke>
14 </Mark>
15 <Size>6</Size>

8.2. SLD Cookbook 233

GeoServer User Manual, Release 2.1-RC4

Figure 8.2: Simple point with stroke

234 Chapter 8. Styling

GeoServer User Manual, Release 2.1-RC4

16 </Graphic>
17 </PointSymbolizer>
18 </Rule>
19 </FeatureTypeStyle>

Details

This example is similar to the Simple point example. Lines 10-13 specify the stroke, with line 11 setting the
color to black (#000000) and line 12 setting the width to 2 pixels.

Rotated square

This example creates a square instead of a circle, colors it green, sizes it to 12 pixels, and rotates it by 45
degrees.

Figure 8.3: Rotated square

Code

View and download the full “Rotated square” SLD

1 <FeatureTypeStyle>
2 <Rule>

8.2. SLD Cookbook 235

GeoServer User Manual, Release 2.1-RC4

3 <PointSymbolizer>
4 <Graphic>
5 <Mark>
6 <WellKnownName>square</WellKnownName>
7 <Fill>
8 <CssParameter name="fill">#009900</CssParameter>
9 </Fill>

10 </Mark>
11 <Size>12</Size>
12 <Rotation>45</Rotation>
13 </Graphic>
14 </PointSymbolizer>
15 </Rule>
16 </FeatureTypeStyle>

Details

In this example, line 6 sets the shape to be a square, with line 8 setting the color to a dark green (#009900).
Line 11 sets the size of the square to be 12 pixels, and line 12 set the rotation is to 45 degrees.

Transparent triangle

This example draws a triangle, creates a black stroke identical to the Simple point with stroke example, and
sets the fill of the triangle to 20% opacity (mostly transparent).

Figure 8.4: Transparent triangle

236 Chapter 8. Styling

GeoServer User Manual, Release 2.1-RC4

Code

View and download the full “Transparent triangle” SLD

1 <FeatureTypeStyle>
2 <Rule>
3 <PointSymbolizer>
4 <Graphic>
5 <Mark>
6 <WellKnownName>triangle</WellKnownName>
7 <Fill>
8 <CssParameter name="fill">#009900</CssParameter>
9 <CssParameter name="fill-opacity">0.2</CssParameter>

10 </Fill>
11 <Stroke>
12 <CssParameter name="stroke">#000000</CssParameter>
13 <CssParameter name="stroke-width">2</CssParameter>
14 </Stroke>
15 </Mark>
16 <Size>12</Size>
17 </Graphic>
18 </PointSymbolizer>
19 </Rule>
20 </FeatureTypeStyle>

Details

In this example, line 6 once again sets the shape, in this case to a triangle. Line 8 sets the fill color to a
dark green (#009900) and line 9 sets the opacity to 0.2 (20% opaque). An opacity value of 1 means that
the shape is drawn 100% opaque, while an opacity value of 0 means that the shape is drawn 0% opaque, or
completely transparent. The value of 0.2 (20% opaque) means that the fill of the points partially takes on the
color and style of whatever is drawn beneath it. In this example, since the background is white, the dark
green looks lighter. Were the points imposed on a dark background, the resulting color would be darker.
Lines 12-13 set the stroke color to black (#000000) and width to 2 pixels. Finally, line 16 sets the size of the
point to be 12 pixels in diameter.

Point as graphic

This example styles each point as a graphic instead of as a simple shape.

Code

View and download the full “Point as graphic” SLD

1 <FeatureTypeStyle>
2 <Rule>
3 <PointSymbolizer>
4 <Graphic>
5 <ExternalGraphic>
6 <OnlineResource
7 xlink:type="simple"
8 xlink:href="smileyface.png" />

8.2. SLD Cookbook 237

GeoServer User Manual, Release 2.1-RC4

Figure 8.5: Point as graphic

238 Chapter 8. Styling

GeoServer User Manual, Release 2.1-RC4

9 <Format>image/png</Format>
10 </ExternalGraphic>
11 <Size>32</Size>
12 </Graphic>
13 </PointSymbolizer>
14 </Rule>
15 </FeatureTypeStyle>

Details

This style uses a graphic instead of a simple shape to render the points. In SLD, this is known as an
<ExternalGraphic>, to distinguish it from the commonly-used shapes such as squares and circles that
are “internal” to the renderer. Lines 5-10 specify the details of this graphic. Line 8 sets the path and file
name of the graphic, while line 9 indicates the format (MIME type) of the graphic (image/png). In this
example, the graphic is contained in the same directory as the SLD, so no path information is necessary in
line 8, although a full URL could be used if desired. Line 11 determines the size of the displayed graphic;
this can be set independently of the dimensions of the graphic itself, although in this case they are the same
(32 pixels). Should a graphic be rectangular, the <Size> value will apply to the height of the graphic only,
with the width scaled proportionally.

Figure 8.6: Graphic used for points

Point with default label

This example shows a text label on the Simple point that displays the “name” attribute of the point. This is
how a label will be displayed in the absence of any other customization.

Code

View and download the full “Point with default label” SLD

1 <FeatureTypeStyle>
2 <Rule>
3 <PointSymbolizer>
4 <Graphic>
5 <Mark>
6 <WellKnownName>circle</WellKnownName>
7 <Fill>
8 <CssParameter name="fill">#FF0000</CssParameter>
9 </Fill>

10 </Mark>
11 <Size>6</Size>
12 </Graphic>
13 </PointSymbolizer>
14 <TextSymbolizer>
15 <Label>
16 <ogc:PropertyName>name</ogc:PropertyName>

8.2. SLD Cookbook 239

GeoServer User Manual, Release 2.1-RC4

Figure 8.7: Point with default label

240 Chapter 8. Styling

GeoServer User Manual, Release 2.1-RC4

17 </Label>
18 <Fill>
19 <CssParameter name="fill">#000000</CssParameter>
20 </Fill>
21 </TextSymbolizer>
22 </Rule>
23 </FeatureTypeStyle>

Details

Lines 3-13, which contain the <PointSymbolizer>, are identical to the Simple point example above. The
label is set in the <TextSymbolizer> on lines 14-27. Lines 15-17 determine what text to display in the
label, which in this case is the value of the “name” attribute. (Refer to the attribute table in the Example
points layer section if necessary.) Line 19 sets the text color. All other details about the label are set to the
renderer default, which here is Times New Roman font, font color black, and font size of 10 pixels. The
bottom left of the label is aligned with the center of the point.

Point with styled label

This example improves the label style from the Point with default label example by centering the label above
the point and providing a different font name and size.

Figure 8.8: Point with styled label

8.2. SLD Cookbook 241

GeoServer User Manual, Release 2.1-RC4

Code

View and download the full “Point with styled label” SLD

1 <FeatureTypeStyle>
2 <Rule>
3 <PointSymbolizer>
4 <Graphic>
5 <Mark>
6 <WellKnownName>circle</WellKnownName>
7 <Fill>
8 <CssParameter name="fill">#FF0000</CssParameter>
9 </Fill>

10 </Mark>
11 <Size>6</Size>
12 </Graphic>
13 </PointSymbolizer>
14 <TextSymbolizer>
15 <Label>
16 <ogc:PropertyName>name</ogc:PropertyName>
17 </Label>
18
19 <CssParameter name="font-family">Arial</CssParameter>
20 <CssParameter name="font-size">12</CssParameter>
21 <CssParameter name="font-style">normal</CssParameter>
22 <CssParameter name="font-weight">bold</CssParameter>
23
24 <LabelPlacement>
25 <PointPlacement>
26 <AnchorPoint>
27 <AnchorPointX>0.5</AnchorPointX>
28 <AnchorPointY>0.0</AnchorPointY>
29 </AnchorPoint>
30 <Displacement>
31 <DisplacementX>0</DisplacementX>
32 <DisplacementY>5</DisplacementY>
33 </Displacement>
34 </PointPlacement>
35 </LabelPlacement>
36 <Fill>
37 <CssParameter name="fill">#000000</CssParameter>
38 </Fill>
39 </TextSymbolizer>
40 </Rule>
41 </FeatureTypeStyle>

Details

In this example, lines 3-13 are identical to the Simple point example above. The <TextSymbolizer> on
lines 14-39 contains many more details about the label styling than the previous example, Point with default
label. Lines 15-17 once again specify the “name” attribute as text to display. Lines 18-23 set the font infor-
mation: line 19 sets the font family to be “Arial”, line 20 sets the font size to 12, line 21 sets the font style
to “normal” (as opposed to “italic” or “oblique”), and line 22 sets the font weight to “bold” (as opposed to
“normal”). Lines 24-35 (<LabelPlacement>) determine the placement of the label relative to the point.
The <AnchorPoint> (lines 26-29) sets the point of intersection between the label and point, which here

242 Chapter 8. Styling

GeoServer User Manual, Release 2.1-RC4

(line 27-28) sets the point to be centered (0.5) horizontally axis and bottom aligned (0.0) vertically with the
label. There is also <Displacement> (lines 30-33), which sets the offset of the label relative to the line,
which in this case is 0 pixels horizontally (line 31) and 5 pixels vertically (line 32). Finally, line 37 sets the
font color of the label to black (#000000).

The result is a centered bold label placed slightly above each point.

Point with rotated label

This example builds on the previous example, Point with styled label, by rotating the label by 45 degrees,
positioning the labels farther away from the points, and changing the color of the label to purple.

Figure 8.9: Point with rotated label

Code

View and download the full “Point with rotated label” SLD

1 <FeatureTypeStyle>
2 <Rule>
3 <PointSymbolizer>
4 <Graphic>
5 <Mark>
6 <WellKnownName>circle</WellKnownName>
7 <Fill>
8 <CssParameter name="fill">#FF0000</CssParameter>

8.2. SLD Cookbook 243

GeoServer User Manual, Release 2.1-RC4

9 </Fill>
10 </Mark>
11 <Size>6</Size>
12 </Graphic>
13 </PointSymbolizer>
14 <TextSymbolizer>
15 <Label>
16 <ogc:PropertyName>name</ogc:PropertyName>
17 </Label>
18
19 <CssParameter name="font-family">Arial</CssParameter>
20 <CssParameter name="font-size">12</CssParameter>
21 <CssParameter name="font-style">normal</CssParameter>
22 <CssParameter name="font-weight">bold</CssParameter>
23
24 <LabelPlacement>
25 <PointPlacement>
26 <AnchorPoint>
27 <AnchorPointX>0.5</AnchorPointX>
28 <AnchorPointY>0.0</AnchorPointY>
29 </AnchorPoint>
30 <Displacement>
31 <DisplacementX>0</DisplacementX>
32 <DisplacementY>25</DisplacementY>
33 </Displacement>
34 <Rotation>-45</Rotation>
35 </PointPlacement>
36 </LabelPlacement>
37 <Fill>
38 <CssParameter name="fill">#990099</CssParameter>
39 </Fill>
40 </TextSymbolizer>
41 </Rule>
42 </FeatureTypeStyle>

Details

This example is similar to the Point with styled label, but there are three important differences. Line 32
specifies 25 pixels of vertical displacement. Line 34 specifies a rotation of “-45” or 45 degrees counter-
clockwise. (Rotation values increase clockwise, which is why the value is negative.) Finally, line 38 sets the
font color to be a shade of purple (#99099).

Note that the displacement takes effect before the rotation during rendering, so in this example, the 25 pixel
vertical displacement is itself rotated 45 degrees.

Attribute-based point

This example alters the size of the symbol based on the value of the population (“pop”) attribute.

Code

View and download the full “Attribute-based point” SLD

244 Chapter 8. Styling

GeoServer User Manual, Release 2.1-RC4

Figure 8.10: Attribute-based point

8.2. SLD Cookbook 245

GeoServer User Manual, Release 2.1-RC4

1 <FeatureTypeStyle>
2 <Rule>
3 <Name>SmallPop</Name>
4 <Title>1 to 50000</Title>
5 <ogc:Filter>
6 <ogc:PropertyIsLessThan>
7 <ogc:PropertyName>pop</ogc:PropertyName>
8 <ogc:Literal>50000</ogc:Literal>
9 </ogc:PropertyIsLessThan>

10 </ogc:Filter>
11 <PointSymbolizer>
12 <Graphic>
13 <Mark>
14 <WellKnownName>circle</WellKnownName>
15 <Fill>
16 <CssParameter name="fill">#0033CC</CssParameter>
17 </Fill>
18 </Mark>
19 <Size>8</Size>
20 </Graphic>
21 </PointSymbolizer>
22 </Rule>
23 <Rule>
24 <Name>MediumPop</Name>
25 <Title>50000 to 100000</Title>
26 <ogc:Filter>
27 <ogc:And>
28 <ogc:PropertyIsGreaterThanOrEqualTo>
29 <ogc:PropertyName>pop</ogc:PropertyName>
30 <ogc:Literal>50000</ogc:Literal>
31 </ogc:PropertyIsGreaterThanOrEqualTo>
32 <ogc:PropertyIsLessThan>
33 <ogc:PropertyName>pop</ogc:PropertyName>
34 <ogc:Literal>100000</ogc:Literal>
35 </ogc:PropertyIsLessThan>
36 </ogc:And>
37 </ogc:Filter>
38 <PointSymbolizer>
39 <Graphic>
40 <Mark>
41 <WellKnownName>circle</WellKnownName>
42 <Fill>
43 <CssParameter name="fill">#0033CC</CssParameter>
44 </Fill>
45 </Mark>
46 <Size>12</Size>
47 </Graphic>
48 </PointSymbolizer>
49 </Rule>
50 <Rule>
51 <Name>LargePop</Name>
52 <Title>Greater than 100000</Title>
53 <ogc:Filter>
54 <ogc:PropertyIsGreaterThanOrEqualTo>
55 <ogc:PropertyName>pop</ogc:PropertyName>
56 <ogc:Literal>100000</ogc:Literal>
57 </ogc:PropertyIsGreaterThanOrEqualTo>

246 Chapter 8. Styling

GeoServer User Manual, Release 2.1-RC4

58 </ogc:Filter>
59 <PointSymbolizer>
60 <Graphic>
61 <Mark>
62 <WellKnownName>circle</WellKnownName>
63 <Fill>
64 <CssParameter name="fill">#0033CC</CssParameter>
65 </Fill>
66 </Mark>
67 <Size>16</Size>
68 </Graphic>
69 </PointSymbolizer>
70 </Rule>
71 </FeatureTypeStyle>

Details

Note: Refer to the Example points layer to see the attributes for this data. This example has eschewed labels
in order to simplify the style, but you can refer to the example Point with styled label to see which attributes
correspond to which points.

This style contains three rules. Each <Rule> varies the style based on the value of the population (“pop”)
attribute for each point, with smaller values yielding a smaller circle, and larger values yielding a larger
circle.

The three rules are designed as follows:

Rule order Rule name Population (“pop”) Size
1 SmallPop Less than 50,000 8
2 MediumPop 50,000 to 100,000 12
3 LargePop Greater than 100,000 16

The order of the rules does not matter in this case, since each shape is only rendered by a single rule.

The first rule, on lines 2-22, specifies the styling of those points whose population attribute is less than
50,000. Lines 5-10 set this filter, with lines 6-9 setting the “less than” filter, line 7 denoting the attribute
(“pop”), and line 8 the value of 50,000. The symbol is a circle (line 14), the color is dark blue (#0033CC, on
line 16), and the size is 8 pixels in diameter (line 19).

The second rule, on lines 23-49, specifies a style for points whose population attribute is greater than or
equal to 50,000 and less than 100,000. The population filter is set on lines 26-37. This filter is longer than
in the first rule because two criteria need to be specified instead of one: a “greater than or equal to” and a
“less than” filter. Notice the And on line 27 and line 36. This mandates that both filters need to be true for
the rule to be applicable. The size of the graphic is set to 12 pixels on line 46. All other styling directives
are identical to the first rule.

The third rule, on lines 50-70, specifies a style for points whose population attribute is greater than or equal
to 100,000. The population filter is set on lines 53-58, and the only other difference is the size of the circle,
which in this rule (line 67) is 16 pixels.

The result of this style is that cities with larger populations have larger points.

Zoom-based point

This example alters the style of the points at different zoom levels.

8.2. SLD Cookbook 247

GeoServer User Manual, Release 2.1-RC4

Figure 8.11: Zoom-based point: Zoomed in

248 Chapter 8. Styling

GeoServer User Manual, Release 2.1-RC4

Figure 8.12: Zoom-based point: Partially zoomed

8.2. SLD Cookbook 249

GeoServer User Manual, Release 2.1-RC4

Figure 8.13: Zoom-based point: Zoomed out

250 Chapter 8. Styling

GeoServer User Manual, Release 2.1-RC4

Code

View and download the full “Zoom-based point” SLD

1 <FeatureTypeStyle>
2 <Rule>
3 <Name>Large</Name>
4 <MaxScaleDenominator>160000000</MaxScaleDenominator>
5 <PointSymbolizer>
6 <Graphic>
7 <Mark>
8 <WellKnownName>circle</WellKnownName>
9 <Fill>

10 <CssParameter name="fill">#CC3300</CssParameter>
11 </Fill>
12 </Mark>
13 <Size>12</Size>
14 </Graphic>
15 </PointSymbolizer>
16 </Rule>
17 <Rule>
18 <Name>Medium</Name>
19 <MinScaleDenominator>160000000</MinScaleDenominator>
20 <MaxScaleDenominator>320000000</MaxScaleDenominator>
21 <PointSymbolizer>
22 <Graphic>
23 <Mark>
24 <WellKnownName>circle</WellKnownName>
25 <Fill>
26 <CssParameter name="fill">#CC3300</CssParameter>
27 </Fill>
28 </Mark>
29 <Size>8</Size>
30 </Graphic>
31 </PointSymbolizer>
32 </Rule>
33 <Rule>
34 <Name>Small</Name>
35 <MinScaleDenominator>320000000</MinScaleDenominator>
36 <PointSymbolizer>
37 <Graphic>
38 <Mark>
39 <WellKnownName>circle</WellKnownName>
40 <Fill>
41 <CssParameter name="fill">#CC3300</CssParameter>
42 </Fill>
43 </Mark>
44 <Size>4</Size>
45 </Graphic>
46 </PointSymbolizer>
47 </Rule>
48 </FeatureTypeStyle>

8.2. SLD Cookbook 251

GeoServer User Manual, Release 2.1-RC4

Details

It is often desirable to make shapes larger at higher zoom levels when creating a natural-looking map. This
example styles the points to vary in size based on the zoom level (or more accurately, scale denominator).
Scale denominators refer to the scale of the map. A scale denominator of 10,000 means the map has a scale
of 1:10,000 in the units of the map projection.

Note: Determining the appropriate scale denominators (zoom levels) to use is beyond the scope of this
example.

This style contains three rules. The three rules are designed as follows:

Rule order Rule name Scale denominator Point size
1 Large 1:160,000,000 or less 12
2 Medium 1:160,000,000 to 1:320,000,000 8
3 Small Greater than 1:320,000,000 4

The order of these rules does not matter since the scales denominated in each rule do not overlap.

The first rule (lines 2-16) is for the smallest scale denominator, corresponding to when the view is “zoomed
in”. The scale rule is set on line 4, so that the rule will apply to any map with a scale denominator of
160,000,000 or less. The rule draws a circle (line 8), colored red (#CC3300 on line 10) with a size of 12 pixels
(line 13).

The second rule (lines 17-32) is the intermediate scale denominator, corresponding to when the view is
“partially zoomed”. The scale rules are set on lines 19-20, so that the rule will apply to any map with a
scale denominator between 160,000,000 and 320,000,000. (The <MinScaleDenominator> is inclusive and
the <MaxScaleDenominator> is exclusive, so a zoom level of exactly 320,000,000 would not apply here.)
Aside from the scale, the only difference between this rule and the first is the size of the symbol, which is
set to 8 pixels on line 29.

The third rule (lines 33-47) is the largest scale denominator, corresponding to when the map is “zoomed
out”. The scale rule is set on line 35, so that the rule will apply to any map with a scale denominator of
320,000,000 or more. Again, the only other difference between this rule and the others is the size of the
symbol, which is set to 4 pixels on line 44.

The result of this style is that points are drawn larger as one zooms in and smaller as one zooms out.

8.2.2 Lines

While lines can also seem to be simple shapes, having length but no width, there are many options and
tricks for making lines display nicely.

Warning: The code examples shown on this page are not the full SLD code, as they omit the SLD
header and footer information for the sake of brevity. Please use the links to download the full SLD for
each example.

Example lines layer

The lines layer used in the examples below contains road information for a fictional country. For reference,
the attribute table for the points in this layer is included below.

252 Chapter 8. Styling

GeoServer User Manual, Release 2.1-RC4

fid (Feature ID) name (Road name) type (Road class)
line.1 Latway highway
line.2 Crescent Avenue secondary
line.3 Forest Avenue secondary
line.4 Longway highway
line.5 Saxer Avenue secondary
line.6 Ridge Avenue secondary
line.7 Holly Lane local-road
line.8 Mulberry Street local-road
line.9 Nathan Lane local-road
line.10 Central Street local-road
line.11 Lois Lane local-road
line.12 Rocky Road local-road
line.13 Fleet Street local-road
line.14 Diane Court local-road
line.15 Cedar Trail local-road
line.16 Victory Road local-road
line.17 Highland Road local-road
line.18 Easy Street local-road
line.19 Hill Street local-road
line.20 Country Road local-road
line.21 Main Street local-road
line.22 Jani Lane local-road
line.23 Shinbone Alley local-road
line.24 State Street local-road
line.25 River Road local-road

Download the lines shapefile

Simple line

This example specifies lines be colored black with a thickness of 3 pixels.

Code

View and download the full “Simple line” SLD

1 <FeatureTypeStyle>
2 <Rule>
3 <LineSymbolizer>
4 <Stroke>
5 <CssParameter name="stroke">#000000</CssParameter>
6 <CssParameter name="stroke-width">3</CssParameter>
7 </Stroke>
8 </LineSymbolizer>
9 </Rule>

10 </FeatureTypeStyle>

Details

There is one <Rule> in one <FeatureTypeStyle> for this SLD, which is the simplest possible situation.
(All subsequent examples will contain one <Rule> and one <FeatureTypeStyle> unless otherwise spec-

8.2. SLD Cookbook 253

GeoServer User Manual, Release 2.1-RC4

Figure 8.14: Simple line

254 Chapter 8. Styling

GeoServer User Manual, Release 2.1-RC4

ified.) Styling lines is accomplished via the <LineSymbolizer> (lines 3-8). Line 5 specifies the color of
the line to be black (#000000), while line 6 specifies the width of the lines to be 3 pixels.

Line with border

This example draws lines with a blue fill of 3 pixels and a gray stroke of 1 pixel.

Figure 8.15: Line with border

Code

View and download the full “Line with border” SLD

1 <FeatureTypeStyle>
2 <Rule>
3 <LineSymbolizer>
4 <Stroke>
5 <CssParameter name="stroke">#333333</CssParameter>
6 <CssParameter name="stroke-width">5</CssParameter>
7 <CssParameter name="stroke-linecap">round</CssParameter>
8 </Stroke>

8.2. SLD Cookbook 255

GeoServer User Manual, Release 2.1-RC4

9 </LineSymbolizer>
10 </Rule>
11 </FeatureTypeStyle>
12 <FeatureTypeStyle>
13 <Rule>
14 <LineSymbolizer>
15 <Stroke>
16 <CssParameter name="stroke">#6699FF</CssParameter>
17 <CssParameter name="stroke-width">3</CssParameter>
18 <CssParameter name="stroke-linecap">round</CssParameter>
19 </Stroke>
20 </LineSymbolizer>
21 </Rule>
22 </FeatureTypeStyle>

Details

Lines in SLD have no notion of a “fill”, only “stroke”. Thus, unlike points or polygons, it is not possible
to style the “edge” of the line geometry. It is, however, possible to achieve this effect by drawing each line
twice: once with a certain width and again with a slightly smaller width. This gives the illusion of fill and
stroke by obscuring the larger lines everywhere except along the edges of the smaller lines.

Since every line is drawn twice, the order of the rendering is very important. In this style, all of the gray
lines are drawn first via the first <FeatureTypeStyle>, followed by all of the blue lines in a second
<FeatureTypeStyle>. GeoServer will render every <FeatureTypeStyle> in the order that they are
presented in the SLD. This not only ensures that the blue lines won’t be obscured by the gray lines, but also
ensures proper rendering at intersections, so that the blue lines “connect”.

In this example, lines 1-11 comprise the first <FeatureTypeStyle>, which is the outer line (or “stroke”).
Line 5 specifies the color of the line to be dark gray (#333333), line 6 specifies the width of this line to be
5 pixels, and line 7 renders the edges of the line to be rounded instead of flat. (When working with lines
that have borders, using the stroke-linecap parameter ensures that the ends of the lines will have a
properly-drawn border.)

Lines 12-22 comprise the second <FeatureTypeStyle>, which is the the inner line (or “fill”). Line 16
specifies the color of the line to be a medium blue (#6699FF), line 17 specifies the width of this line to be 3
pixels, and line 18 again renders the edges of the line to be rounded instead of flat.

The result is a 3 pixel blue line with a 1 pixel gray border, since the 5 pixel gray line will display 1 pixel on
each side of the 3 pixel blue line.

Dashed line

This example alters the Simple line to create a dashed line consisting of 5 pixels of drawn line alternating
with 2 pixels of blank space.

Code

View and download the full “Dashed line” SLD

1 <FeatureTypeStyle>
2 <Rule>
3 <LineSymbolizer>

256 Chapter 8. Styling

GeoServer User Manual, Release 2.1-RC4

Figure 8.16: Dashed line

8.2. SLD Cookbook 257

GeoServer User Manual, Release 2.1-RC4

4 <Stroke>
5 <CssParameter name="stroke">#0000FF</CssParameter>
6 <CssParameter name="stroke-width">3</CssParameter>
7 <CssParameter name="stroke-dasharray">5 2</CssParameter>
8 </Stroke>
9 </LineSymbolizer>

10 </Rule>
11 </FeatureTypeStyle>

Details

In this example, line 5 sets the color of the lines to be blue (#0000FF) and line 6 sets the width of the lines
to be 3 pixels. Line 7 determines the composition of the line dashes. The value of 5 2 creates a repeating
pattern of 5 pixels of drawn line, followed by 2 pixels of omitted line.

Railroad (hatching)

This example uses hatching to create a railroad style. Both the line and the hatches are black, with a 2 pixel
thickness for the main line and a 1 pixel width for the perpendicular hatches.

Note: This example leverages an SLD extension in GeoServer. Hatching is not part of the standard SLD 1.0
specification.

Code

View and download the full “Railroad (hatching)” SLD

1 <FeatureTypeStyle>
2 <Rule>
3 <LineSymbolizer>
4 <Stroke>
5 <CssParameter name="stroke">#333333</CssParameter>
6 <CssParameter name="stroke-width">3</CssParameter>
7 </Stroke>
8 </LineSymbolizer>
9 </Rule>

10 <Rule>
11 <LineSymbolizer>
12 <Stroke>
13 <GraphicStroke>
14 <Graphic>
15 <Mark>
16 <WellKnownName>shape://vertline</WellKnownName>
17 <Stroke>
18 <CssParameter name="stroke">#333333</CssParameter>
19 <CssParameter name="stroke-width">1</CssParameter>
20 </Stroke>
21 </Mark>
22 <Size>12</Size>
23 </Graphic>
24 </GraphicStroke>
25 </Stroke>
26 </LineSymbolizer>

258 Chapter 8. Styling

GeoServer User Manual, Release 2.1-RC4

Figure 8.17: Railroad (hatching)

8.2. SLD Cookbook 259

GeoServer User Manual, Release 2.1-RC4

27 </Rule>
28 </FeatureTypeStyle>

Details

In this example, there are two rules, each containing a <LineSymbolizer>. (Each <LineSymbolizer>
must exist in its own rule.) The first rule, on lines 2-8, draws a standard line, with line 5 drawing the lines
as dark gray (#333333) and line 6 setting the width of the lines to be 2 pixels.

The hatching is invoked in the second rule, on lines 10-27. Line 16* specifies that the rule draw a vertical
line hatch (‘‘shape://vertline‘‘) perpendicular to the line geometry. **Lines 18-19 set the hatch color to
dark gray (#333333) and width to 1 pixel. Finally, line 22 specifies both the length of the hatch and the
distance between each hatch to both be 12 pixels.

Line with default label

This example shows a text label on the simple line. This is how a label will be displayed in the absence of
any other customization.

Figure 8.18: Line with default label

260 Chapter 8. Styling

GeoServer User Manual, Release 2.1-RC4

Code

View and download the full “Line with default label” SLD

1 <FeatureTypeStyle>
2 <Rule>
3 <LineSymbolizer>
4 <Stroke>
5 <CssParameter name="stroke">#FF0000</CssParameter>
6 </Stroke>
7 </LineSymbolizer>
8 <TextSymbolizer>
9 <Label>

10 <ogc:PropertyName>name</ogc:PropertyName>
11 </Label>
12 <Fill>
13 <CssParameter name="fill">#000000</CssParameter>
14 </Fill>
15 </TextSymbolizer>
16 </Rule>
17 </FeatureTypeStyle>

Details

In this example, there is one rule with a <LineSymbolizer> and a <TextSymbolizer>. The
<LineSymbolizer> (lines 3-7) draws red lines (#FF0000). Since no width is specified, the default is
set to 1 pixel. The <TextSymbolizer> (lines 8-15) determines the labeling of the lines. Lines 9-11 specify
that the text of the label will be determined by the value of the “name” attribute for each line. (Refer to the
attribute table in the Example lines layer section if necessary.) Line 13 sets the text color to black. All other
details about the label are set to the renderer default, which here is Times New Roman font, font color black,
and font size of 10 pixels.

Label following line

This example renders the text label to follow the contour of the lines.

Note: Labels following lines is an SLD extension specific to GeoServer. It is not part of the SLD 1.0
specification.

Code

View and download the full “Label following line” SLD

1 <FeatureTypeStyle>
2 <Rule>
3 <LineSymbolizer>
4 <Stroke>
5 <CssParameter name="stroke">#FF0000</CssParameter>
6 </Stroke>
7 </LineSymbolizer>
8 <TextSymbolizer>
9 <Label>

8.2. SLD Cookbook 261

GeoServer User Manual, Release 2.1-RC4

Figure 8.19: Label following line

262 Chapter 8. Styling

GeoServer User Manual, Release 2.1-RC4

10 <ogc:PropertyName>name</ogc:PropertyName>
11 </Label>
12 <Fill>
13 <CssParameter name="fill">#000000</CssParameter>
14 </Fill>
15 <VendorOption name="followLine">true</VendorOption>
16 <LabelPlacement>
17 <LinePlacement />
18 </LabelPlacement>
19 </TextSymbolizer>
20 </Rule>
21 </FeatureTypeStyle>

Details

As the Line with default label example showed, the default label behavior isn’t very optimal. The label is
displayed at a tangent to the line itself, leading to uncertainty as to which label corresponds to which line.

This example is similar to the Line with default label example with the exception of lines 15-18. Line 15 sets
the option to have the label follow the line, while lines 16-18 specify that the label is placed along a line.
If <LinePlacement /> is not specified in an SLD, then <PointPlacement /> is assumed, which isn’t
compatible with line-specific rendering options.

Note: Not all labels are shown due to label conflict resolution. See the next section on Optimized label
placement for an example of how to maximize label display.

Optimized label placement

This example optimizes label placement for lines such that the maximum number of labels are displayed.

Note: This example uses options that are specific to GeoServer and are not part of the SLD 1.0 specification.

Code

View and download the full “Optimized label” SLD

1 <FeatureTypeStyle>
2 <Rule>
3 <LineSymbolizer>
4 <Stroke>
5 <CssParameter name="stroke">#FF0000</CssParameter>
6 </Stroke>
7 </LineSymbolizer>
8 <TextSymbolizer>
9 <Label>

10 <ogc:PropertyName>name</ogc:PropertyName>
11 </Label>
12 <Fill>
13 <CssParameter name="fill">#000000</CssParameter>
14 </Fill>
15 <VendorOption name="followLine">true</VendorOption>
16 <VendorOption name="maxAngleDelta">90</VendorOption>

8.2. SLD Cookbook 263

GeoServer User Manual, Release 2.1-RC4

Figure 8.20: Optimized label

264 Chapter 8. Styling

GeoServer User Manual, Release 2.1-RC4

17 <VendorOption name="maxDisplacement">400</VendorOption>
18 <VendorOption name="repeat">150</VendorOption>
19 <LabelPlacement>
20 <LinePlacement />
21 </LabelPlacement>
22 </TextSymbolizer>
23 </Rule>
24 </FeatureTypeStyle>

Details

GeoServer uses “conflict resolution” to ensure that labels aren’t drawn on top of other labels, obscuring
them both. This accounts for the reason why many lines don’t have labels in the previous example, Label
following line. While this setting can be toggled, it is usually a good idea to leave it on and use other label
placement options to ensure that labels are drawn as often as desired and in the correct places. This example
does just that.

This example is similar to the previous example, Label following line. The only differences are contained in
lines 16-18. Line 16 sets the maximum angle that the label will follow. This sets the label to never bend
more than 90 degrees to prevent the label from becoming illegible due to a pronounced curve or angle.
Line 17 sets the maximum displacement of the label to be 400 pixels. In order to resolve conflicts with
overlapping labels, GeoServer will attempt to move the labels such that they are no longer overlapping.
This value sets how far the label can be moved relative to its original placement. Finally, line 18 sets the
labels to be repeated every 150 pixels. A feature will typically receive only one label, but this can cause
confusion for long lines. Setting the label to repeat ensures that the line is always labeled locally.

Optimized and styled label

This example improves the style of the labels from the Optimized label placement example.

Code

View and download the full “Optimized and styled label” SLD

1 <FeatureTypeStyle>
2 <Rule>
3 <LineSymbolizer>
4 <Stroke>
5 <CssParameter name="stroke">#FF0000</CssParameter>
6 </Stroke>
7 </LineSymbolizer>
8 <TextSymbolizer>
9 <Label>

10 <ogc:PropertyName>name</ogc:PropertyName>
11 </Label>
12 <Fill>
13 <CssParameter name="fill">#000000</CssParameter>
14 </Fill>
15
16 <CssParameter name="font-family">Arial</CssParameter>
17 <CssParameter name="font-size">10</CssParameter>
18 <CssParameter name="font-style">normal</CssParameter>

8.2. SLD Cookbook 265

GeoServer User Manual, Release 2.1-RC4

Figure 8.21: Optimized and styled label

266 Chapter 8. Styling

GeoServer User Manual, Release 2.1-RC4

19 <CssParameter name="font-weight">bold</CssParameter>
20
21 <VendorOption name="followLine">true</VendorOption>
22 <VendorOption name="maxAngleDelta">90</VendorOption>
23 <VendorOption name="maxDisplacement">400</VendorOption>
24 <VendorOption name="repeat">150</VendorOption>
25 <LabelPlacement>
26 <LinePlacement />
27 </LabelPlacement>
28 </TextSymbolizer>
29 </Rule>
30 </FeatureTypeStyle>

Details

This example is similar to the Optimized label placement. The only difference is in the font information, which
is contained in lines 15-20. Line 16 sets the font family to be “Arial”, line 17 sets the font size to 10, line
18 sets the font style to “normal” (as opposed to “italic” or “oblique”), and line 19 sets the font weight to
“bold” (as opposed to “normal”).

Attribute-based line

This example styles the lines differently based on the “type” (Road class) attribute.

Code

View and download the full “Attribute-based line” SLD

1 <FeatureTypeStyle>
2 <Rule>
3 <Name>local-road</Name>
4 <ogc:Filter>
5 <ogc:PropertyIsEqualTo>
6 <ogc:PropertyName>type</ogc:PropertyName>
7 <ogc:Literal>local-road</ogc:Literal>
8 </ogc:PropertyIsEqualTo>
9 </ogc:Filter>

10 <LineSymbolizer>
11 <Stroke>
12 <CssParameter name="stroke">#009933</CssParameter>
13 <CssParameter name="stroke-width">2</CssParameter>
14 </Stroke>
15 </LineSymbolizer>
16 </Rule>
17 </FeatureTypeStyle>
18 <FeatureTypeStyle>
19 <Rule>
20 <Name>secondary</Name>
21 <ogc:Filter>
22 <ogc:PropertyIsEqualTo>
23 <ogc:PropertyName>type</ogc:PropertyName>
24 <ogc:Literal>secondary</ogc:Literal>
25 </ogc:PropertyIsEqualTo>

8.2. SLD Cookbook 267

GeoServer User Manual, Release 2.1-RC4

Figure 8.22: Attribute-based line

268 Chapter 8. Styling

GeoServer User Manual, Release 2.1-RC4

26 </ogc:Filter>
27 <LineSymbolizer>
28 <Stroke>
29 <CssParameter name="stroke">#0055CC</CssParameter>
30 <CssParameter name="stroke-width">3</CssParameter>
31 </Stroke>
32 </LineSymbolizer>
33 </Rule>
34 </FeatureTypeStyle>
35 <FeatureTypeStyle>
36 <Rule>
37 <Name>highway</Name>
38 <ogc:Filter>
39 <ogc:PropertyIsEqualTo>
40 <ogc:PropertyName>type</ogc:PropertyName>
41 <ogc:Literal>highway</ogc:Literal>
42 </ogc:PropertyIsEqualTo>
43 </ogc:Filter>
44 <LineSymbolizer>
45 <Stroke>
46 <CssParameter name="stroke">#FF0000</CssParameter>
47 <CssParameter name="stroke-width">6</CssParameter>
48 </Stroke>
49 </LineSymbolizer>
50 </Rule>
51 </FeatureTypeStyle>

Details

Note: Refer to the Example lines layer to see the attributes for the layer. This example has eschewed labels in
order to simplify the style, but you can refer to the example Optimized and styled label to see which attributes
correspond to which points.

There are three types of road classes in our fictional country, ranging from back roads to high-speed free-
ways: “highway”, “secondary”, and “local-road”. In order to handle each case separately, there is more
than one <FeatureTypeStyle>, each containing a single rule. This ensures that each road type is ren-
dered in order, as each <FeatureTypeStyle> is drawn based on the order in which it appears in the
SLD.

The three rules are designed as follows:

Rule order Rule name / type Color Size
1 local-road #009933 (green) 2
2 secondary #0055CC (blue) 3
3 highway #FF0000 (red) 6

Lines 2-16 comprise the first <Rule>. Lines 4-9 set the filter for this rule, such that the “type” attribute
has a value of “local-road”. If this condition is true for a particular line, the rule is rendered according to
the <LineSymbolizer> which is on lines 10-15. Lines 12-13 set the color of the line to be a dark green
(#009933) and the width to be 2 pixels.

Lines 19-33 comprise the second <Rule>. Lines 21-26 set the filter for this rule, such that the “type”
attribute has a value of “secondary”. If this condition is true for a particular line, the rule is rendered
according to the <LineSymbolizer> which is on lines 27-32. Lines 29-30 set the color of the line to be a
dark blue (#0055CC) and the width to be 3 pixels, making the lines slightly thicker than the “local-road”
lines and also a different color.

8.2. SLD Cookbook 269

GeoServer User Manual, Release 2.1-RC4

Lines 36-50 comprise the third and final <Rule>. Lines 38-43 set the filter for this rule, such that the
“type” attribute has a value of “primary”. If this condition is true for a particular line, the rule is rendered
according to the <LineSymbolizer> which is on lines 44-49. Lines 46-47 set the color of the line to be a
bright red (#FF0000) and the width to be 6 pixels, so that these lines are rendered on top of and thicker
than the other two road classes. In this way, the “primary” roads are given priority in the map rendering.

Zoom-based line

This example alters the Simple line style at different zoom levels.

Figure 8.23: Zoom-based line: Zoomed in

Code

View and download the full “Zoom-based line” SLD

1 <FeatureTypeStyle>
2 <Rule>
3 <Name>Large</Name>
4 <MaxScaleDenominator>180000000</MaxScaleDenominator>
5 <LineSymbolizer>

270 Chapter 8. Styling

GeoServer User Manual, Release 2.1-RC4

Figure 8.24: Zoom-based line: Partially zoomed

8.2. SLD Cookbook 271

GeoServer User Manual, Release 2.1-RC4

Figure 8.25: Zoom-based line: Zoomed out

272 Chapter 8. Styling

GeoServer User Manual, Release 2.1-RC4

6 <Stroke>
7 <CssParameter name="stroke">#009933</CssParameter>
8 <CssParameter name="stroke-width">6</CssParameter>
9 </Stroke>

10 </LineSymbolizer>
11 </Rule>
12 <Rule>
13 <Name>Medium</Name>
14 <MinScaleDenominator>180000000</MinScaleDenominator>
15 <MaxScaleDenominator>360000000</MaxScaleDenominator>
16 <LineSymbolizer>
17 <Stroke>
18 <CssParameter name="stroke">#009933</CssParameter>
19 <CssParameter name="stroke-width">4</CssParameter>
20 </Stroke>
21 </LineSymbolizer>
22 </Rule>
23 <Rule>
24 <Name>Small</Name>
25 <MinScaleDenominator>360000000</MinScaleDenominator>
26 <LineSymbolizer>
27 <Stroke>
28 <CssParameter name="stroke">#009933</CssParameter>
29 <CssParameter name="stroke-width">2</CssParameter>
30 </Stroke>
31 </LineSymbolizer>
32 </Rule>
33 </FeatureTypeStyle>

Details

It is often desirable to make shapes larger at higher zoom levels when creating a natural-looking map. This
example varies the thickness of the lines according to the zoom level (or more accurately, scale denomina-
tor). Scale denominators refer to the scale of the map. A scale denominator of 10,000 means the map has a
scale of 1:10,000 in the units of the map projection.

Note: Determining the appropriate scale denominators (zoom levels) to use is beyond the scope of this
example.

This style contains three rules. The three rules are designed as follows:

Rule order Rule name Scale denominator Line width
1 Large 1:180,000,000 or less 6
2 Medium 1:180,000,000 to 1:360,000,000 4
3 Small Greater than 1:360,000,000 2

The order of these rules does not matter since the scales denominated in each rule do not overlap.

The first rule (lines 2-11) is the smallest scale denominator, corresponding to when the view is “zoomed in”.
The scale rule is set on line 4, so that the rule will apply to any map with a scale denominator of 180,000,000
or less. Line 7-8 draws the line to be dark green (#009933) with a width of 6 pixels.

The second rule (lines 12-22) is the intermediate scale denominator, corresponding to when the view is
“partially zoomed”. Lines 14-15 set the scale such that the rule will apply to any map with scale de-
nominators between 180,000,000 and 360,000,000. (The <MinScaleDenominator> is inclusive and the
<MaxScaleDenominator> is exclusive, so a zoom level of exactly 360,000,000 would not apply here.)

8.2. SLD Cookbook 273

GeoServer User Manual, Release 2.1-RC4

Aside from the scale, the only difference between this rule and the previous is the width of the lines, which
is set to 4 pixels on line 19.

The third rule (lines 23-32) is the largest scale denominator, corresponding to when the map is “zoomed
out”. The scale rule is set on line 25, so that the rule will apply to any map with a scale denominator of
360,000,000 or greater. Again, the only other difference between this rule and the others is the width of the
lines, which is set to 2 pixels on line 29.

The result of this style is that lines are drawn with larger widths as one zooms in and smaller widths as one
zooms out.

8.2.3 Polygons

Polygons are two dimensional shapes that contain both an outer edge (or “stroke”) and an inside (or “fill”).
A polygon can be thought of as an irregularly-shaped point and is styled in similar ways to points.

Warning: The code examples shown on this page are not the full SLD code, as they omit the SLD
header and footer information for the sake of brevity. Please use the links to download the full SLD for
each example.

Example polygons layer

The polygons layer used below contains county information for a fictional country. For reference, the
attribute table for the polygons is included below.

fid (Feature ID) name (County name) pop (Population)
polygon.1 Irony County 412234
polygon.2 Tracker County 235421
polygon.3 Dracula County 135022
polygon.4 Poly County 1567879
polygon.5 Bearing County 201989
polygon.6 Monte Cristo County 152734
polygon.7 Massive County 67123
polygon.8 Rhombus County 198029

Download the polygons shapefile

Simple polygon

This example shows a polygon filled in blue.

Code

View and download the full “Simple polygon” SLD

1 <FeatureTypeStyle>
2 <Rule>
3 <PolygonSymbolizer>
4 <Fill>
5 <CssParameter name="fill">#000080</CssParameter>
6 </Fill>
7 </PolygonSymbolizer>

274 Chapter 8. Styling

GeoServer User Manual, Release 2.1-RC4

Figure 8.26: Simple polygon

8.2. SLD Cookbook 275

GeoServer User Manual, Release 2.1-RC4

8 </Rule>
9 </FeatureTypeStyle>

Details

There is one <Rule> in one <FeatureTypeStyle> for this style, which is the simplest possible situation.
(All subsequent examples will share this characteristic unless otherwise specified.) Styling polygons is
accomplished via the <PolygonSymbolizer> (lines 3-7). Line 5 specifies dark blue (#000080) as the
polygon’s fill color.

Note: The light-colored borders around the polygons in the figure are artifacts of the renderer caused by
the polygons being adjacent. There is no border in this style.

Simple polygon with stroke

This example adds a 2 pixel white stroke to the Simple polygon example.

Figure 8.27: Simple polygon with stroke

276 Chapter 8. Styling

GeoServer User Manual, Release 2.1-RC4

Code

View and download the full “Simple polygon with stroke” SLD

1 <FeatureTypeStyle>
2 <Rule>
3 <PolygonSymbolizer>
4 <Fill>
5 <CssParameter name="fill">#000080</CssParameter>
6 </Fill>
7 <Stroke>
8 <CssParameter name="stroke">#FFFFFF</CssParameter>
9 <CssParameter name="stroke-width">2</CssParameter>

10 </Stroke>
11 </PolygonSymbolizer>
12 </Rule>
13 </FeatureTypeStyle>

Details

This example is similar to the Simple polygon example above, with the addition of the <Stroke> tag (lines
7-10). Line 8 sets the color of stroke to white (#FFFFFF) and line 9 sets the width of the stroke to 2 pixels.

Transparent polygon

This example builds on the Simple polygon with stroke example and makes the fill partially transparent by
setting the opacity to 50%.

Code

View and download the full “Transparent polygon” SLD

1 <FeatureTypeStyle>
2 <Rule>
3 <PolygonSymbolizer>
4 <Fill>
5 <CssParameter name="fill">#000080</CssParameter>
6 <CssParameter name="fill-opacity">0.5</CssParameter>
7 </Fill>
8 <Stroke>
9 <CssParameter name="stroke">#FFFFFF</CssParameter>

10 <CssParameter name="stroke-width">2</CssParameter>
11 </Stroke>
12 </PolygonSymbolizer>
13 </Rule>
14 </FeatureTypeStyle>

Details

This example is similar to the Simple polygon with stroke example, save for defining the fill’s opacity in line
6. The value of 0.5 results in partially transparent fill that is 50% opaque. An opacity value of 1 would draw

8.2. SLD Cookbook 277

GeoServer User Manual, Release 2.1-RC4

Figure 8.28: Transparent polygon

278 Chapter 8. Styling

GeoServer User Manual, Release 2.1-RC4

the fill as 100% opaque, while an opacity value of 0 would result in a completely transparent (0% opaque)
fill. In this example, since the background is white, the dark blue looks lighter. Were the points imposed on
a dark background, the resulting color would be darker.

Graphic fill

This example fills the polygons with a tiled graphic.

Figure 8.29: Graphic fill

Code

View and download the full “Graphic fill” SLD

1 <FeatureTypeStyle>
2 <Rule>
3 <PolygonSymbolizer>
4 <Fill>
5 <GraphicFill>
6 <Graphic>
7 <ExternalGraphic>

8.2. SLD Cookbook 279

GeoServer User Manual, Release 2.1-RC4

8 <OnlineResource
9 xlink:type="simple"

10 xlink:href="colorblocks.png" />
11 <Format>image/png</Format>
12 </ExternalGraphic>
13 <Size>93</Size>
14 </Graphic>
15 </GraphicFill>
16 </Fill>
17 </PolygonSymbolizer>
18 </Rule>
19 </FeatureTypeStyle>

Details

This style fills the polygon with a tiled graphic. This is known as an <ExternalGraphic> in SLD, to
distinguish it from commonly-used shapes such as squares and circles that are “internal” to the renderer.
Lines 7-12 specify details for the graphic, with line 10 setting the path and file name of the graphic and
line 11 indicating the file format (MIME type) of the graphic (image/png). Although a full URL could be
specified if desired, no path information is necessary in line 11 because this graphic is contained in the
same directory as the SLD. Line 13 determines the height of the displayed graphic in pixels; if the value
differs from the height of the graphic then it will be scaled accordingly while preserving the aspect ratio.

Figure 8.30: Graphic used for fill

Hatching fill

This example fills the polygons with a hatching pattern.

Note: This example leverages an SLD extension in GeoServer. Hatching is not part of the standard SLD 1.0
specification.

Code

View and download the full “Hatching fill” SLD

1 <FeatureTypeStyle>
2 <Rule>
3 <PolygonSymbolizer>
4 <Fill>
5 <GraphicFill>
6 <Graphic>

280 Chapter 8. Styling

GeoServer User Manual, Release 2.1-RC4

Figure 8.31: Hatching fill

8.2. SLD Cookbook 281

GeoServer User Manual, Release 2.1-RC4

7 <Mark>
8 <WellKnownName>shape://times</WellKnownName>
9 <Stroke>

10 <CssParameter name="stroke">#990099</CssParameter>
11 <CssParameter name="stroke-width">1</CssParameter>
12 </Stroke>
13 </Mark>
14 <Size>16</Size>
15 </Graphic>
16 </GraphicFill>
17 </Fill>
18 </PolygonSymbolizer>
19 </Rule>
20 </FeatureTypeStyle>

Details

In this example, there is a <GraphicFill> tag as in the Graphic fill example, but a <Mark> (lines 7-13) is
used instead of an <ExternalGraphic>. Line 8 specifies a “times” symbol (an “x”) be tiled throughout
the polygon. Line 10 sets the color to purple (#990099), line 11 sets the width of the hatches to 1 pixel, and
line 14 sets the size of the tile to 16 pixels. Because hatch tiles are always square, the <Size> sets both the
width and the height.

Polygon with default label

This example shows a text label on the polygon. In the absence of any other customization, this is how a
label will be displayed.

Code

View and download the full “Polygon with default label” SLD

1 <FeatureTypeStyle>
2 <Rule>
3 <PolygonSymbolizer>
4 <Fill>
5 <CssParameter name="fill">#40FF40</CssParameter>
6 </Fill>
7 <Stroke>
8 <CssParameter name="stroke">#FFFFFF</CssParameter>
9 <CssParameter name="stroke-width">2</CssParameter>

10 </Stroke>
11 </PolygonSymbolizer>
12 <TextSymbolizer>
13 <Label>
14 <ogc:PropertyName>name</ogc:PropertyName>
15 </Label>
16 </TextSymbolizer>
17 </Rule>
18 </FeatureTypeStyle>

282 Chapter 8. Styling

GeoServer User Manual, Release 2.1-RC4

Figure 8.32: Polygon with default label

8.2. SLD Cookbook 283

GeoServer User Manual, Release 2.1-RC4

Details

In this example there is a <PolygonSymbolizer> and a <TextSymbolizer>. Lines 3-11 comprise the
<PolygonSymbolizer>. The fill of the polygon is set on line 5 to a light green (#40FF40) while the stroke
of the polygon is set on lines 8-9 to white (#FFFFFF) with a thickness of 2 pixels. The label is set in the
<TextSymbolizer> on lines 12-16, with line 14 determining what text to display, in this case the value
of the “name” attribute. (Refer to the attribute table in the Example polygons layer section if necessary.) All
other details about the label are set to the renderer default, which here is Times New Roman font, font color
black, and font size of 10 pixels.

Label halo

This example alters the look of the Polygon with default label by adding a white halo to the label.

Figure 8.33: Label halo

Code

View and download the full “Label halo” SLD

284 Chapter 8. Styling

GeoServer User Manual, Release 2.1-RC4

1 <FeatureTypeStyle>
2 <Rule>
3 <PolygonSymbolizer>
4 <Fill>
5 <CssParameter name="fill">#40FF40</CssParameter>
6 </Fill>
7 <Stroke>
8 <CssParameter name="stroke">#FFFFFF</CssParameter>
9 <CssParameter name="stroke-width">2</CssParameter>

10 </Stroke>
11 </PolygonSymbolizer>
12 <TextSymbolizer>
13 <Label>
14 <ogc:PropertyName>name</ogc:PropertyName>
15 </Label>
16 <Halo>
17 <Radius>3</Radius>
18 <Fill>
19 <CssParameter name="fill">#FFFFFF</CssParameter>
20 </Fill>
21 </Halo>
22 </TextSymbolizer>
23 </Rule>
24 </FeatureTypeStyle>

Details

This example is similar to the Polygon with default label, with the addition of a halo around the labels on
lines 16-21. A halo creates a color buffer around the label to improve label legibility. Line 17 sets the radius
of the halo, extending the halo 3 pixels around the edge of the label, and line 19 sets the color of the halo
to white (#FFFFFF). Since halos are most useful when set to a sharp contrast relative to the text color, this
example uses a white halo around black text to ensure optimum readability.

Polygon with styled label

This example improves the label style from the Polygon with default label example by centering the label on
the polygon, specifying a different font name and size, and setting additional label placement optimiza-
tions.

Note: The label placement optimizations discussed below (the <VendorOption> tags) are SLD extensions
that are custom to GeoServer. They are not part of the SLD 1.0 specification.

Code

View and download the full “Polygon with styled label” SLD

1 <FeatureTypeStyle>
2 <Rule>
3 <PolygonSymbolizer>
4 <Fill>
5 <CssParameter name="fill">#40FF40</CssParameter>
6 </Fill>

8.2. SLD Cookbook 285

GeoServer User Manual, Release 2.1-RC4

Figure 8.34: Polygon with styled label

286 Chapter 8. Styling

GeoServer User Manual, Release 2.1-RC4

7 <Stroke>
8 <CssParameter name="stroke">#FFFFFF</CssParameter>
9 <CssParameter name="stroke-width">2</CssParameter>

10 </Stroke>
11 </PolygonSymbolizer>
12 <TextSymbolizer>
13 <Label>
14 <ogc:PropertyName>name</ogc:PropertyName>
15 </Label>
16
17 <CssParameter name="font-family">Arial</CssParameter>
18 <CssParameter name="font-size">11</CssParameter>
19 <CssParameter name="font-style">normal</CssParameter>
20 <CssParameter name="font-weight">bold</CssParameter>
21
22 <LabelPlacement>
23 <PointPlacement>
24 <AnchorPoint>
25 <AnchorPointX>0.5</AnchorPointX>
26 <AnchorPointY>0.5</AnchorPointY>
27 </AnchorPoint>
28 </PointPlacement>
29 </LabelPlacement>
30 <Fill>
31 <CssParameter name="fill">#000000</CssParameter>
32 </Fill>
33 <VendorOption name="autoWrap">60</VendorOption>
34 <VendorOption name="maxDisplacement">150</VendorOption>
35 </TextSymbolizer>
36 </Rule>
37 </FeatureTypeStyle>

Details

This example is similar to the Polygon with default label example, with additional styling options within the
<TextSymbolizer> on lines 12-35. Lines 16-21 set the font styling. Line 17 sets the font family to be
Arial, line 18 sets the font size to 11 pixels, line 19 sets the font style to “normal” (as opposed to “italic” or
“oblique”), and line 20 sets the font weight to “bold” (as opposed to “normal”).

The <LabelPlacement> tag on lines 22-29 affects where the label is placed relative to the centroid of the
polygon. Line 21 centers the label by positioning it 50% (or 0.5) of the way horizontally along the centroid
of the polygon. Line 22 centers the label vertically in exactly the same way.

Finally, there are two added touches for label placement optimization: line 33 ensures that long labels are
split across multiple lines by setting line wrapping on the labels to 60 pixels, and line 34 allows the label to
be displaced by up to 150 pixels. This ensures that labels are compacted and less likely to spill over polygon
boundaries. Notice little Massive County in the corner, whose label is now displayed.”

Attribute-based polygon

This example styles the polygons differently based on the “pop” (Population) attribute.

8.2. SLD Cookbook 287

GeoServer User Manual, Release 2.1-RC4

Figure 8.35: Attribute-based polygon

288 Chapter 8. Styling

GeoServer User Manual, Release 2.1-RC4

Code

View and download the full “Attribute-based polygon” SLD

1 <FeatureTypeStyle>
2 <Rule>
3 <Name>SmallPop</Name>
4 <Title>Less Than 200,000</Title>
5 <ogc:Filter>
6 <ogc:PropertyIsLessThan>
7 <ogc:PropertyName>pop</ogc:PropertyName>
8 <ogc:Literal>200000</ogc:Literal>
9 </ogc:PropertyIsLessThan>

10 </ogc:Filter>
11 <PolygonSymbolizer>
12 <Fill>
13 <CssParameter name="fill">#66FF66</CssParameter>
14 </Fill>
15 </PolygonSymbolizer>
16 </Rule>
17 <Rule>
18 <Name>MediumPop</Name>
19 <Title>200,000 to 500,000</Title>
20 <ogc:Filter>
21 <ogc:And>
22 <ogc:PropertyIsGreaterThanOrEqualTo>
23 <ogc:PropertyName>pop</ogc:PropertyName>
24 <ogc:Literal>200000</ogc:Literal>
25 </ogc:PropertyIsGreaterThanOrEqualTo>
26 <ogc:PropertyIsLessThan>
27 <ogc:PropertyName>pop</ogc:PropertyName>
28 <ogc:Literal>500000</ogc:Literal>
29 </ogc:PropertyIsLessThan>
30 </ogc:And>
31 </ogc:Filter>
32 <PolygonSymbolizer>
33 <Fill>
34 <CssParameter name="fill">#33CC33</CssParameter>
35 </Fill>
36 </PolygonSymbolizer>
37 </Rule>
38 <Rule>
39 <Name>LargePop</Name>
40 <Title>Greater Than 500,000</Title>
41 <ogc:Filter>
42 <ogc:PropertyIsGreaterThan>
43 <ogc:PropertyName>pop</ogc:PropertyName>
44 <ogc:Literal>500000</ogc:Literal>
45 </ogc:PropertyIsGreaterThan>
46 </ogc:Filter>
47 <PolygonSymbolizer>
48 <Fill>
49 <CssParameter name="fill">#009900</CssParameter>
50 </Fill>
51 </PolygonSymbolizer>
52 </Rule>
53 </FeatureTypeStyle>

8.2. SLD Cookbook 289

GeoServer User Manual, Release 2.1-RC4

Details

Note: Refer to the Example polygons layer to see the attributes for the layer. This example has eschewed
labels in order to simplify the style, but you can refer to the example Polygon with styled label to see which
attributes correspond to which polygons.

Each polygon in our fictional country has a population that is represented by the population (“pop”) at-
tribute. This style contains three rules that alter the fill based on the value of “pop” attribute, with smaller
values yielding a lighter color and larger values yielding a darker color.

The three rules are designed as follows:

Rule order Rule name Population (“pop”) Color
1 SmallPop Less than 200,000 #66FF66
2 MediumPop 200,000 to 500,000 #33CC33
3 LargePop Greater than 500,000 #009900

The order of the rules does not matter in this case, since each shape is only rendered by a single rule.

The first rule, on lines 2-16, specifies the styling of polygons whose population attribute is less than 200,000.
Lines 5-10 set this filter, with lines 6-9 setting the “less than” filter, line 7 denoting the attribute (“pop”),
and line 8 the value of 200,000. The color of the polygon fill is set to a light green (#66FF66) on line 13.

The second rule, on lines 17-37, is similar, specifying a style for polygons whose population attribute is
greater than or equal to 200,000 but less than 500,000. The filter is set on lines 20-31. This filter is longer
than in the first rule because two criteria need to be specified instead of one: a “greater than or equal to”
and a “less than” filter. Notice the And on line 21 and line 30. This mandates that both filters need to be
true for the rule to be applicable. The color of the polygon fill is set to a medium green on (#33CC33) on
line 34.

The third rule, on lines 38-52, specifies a style for polygons whose population attribute is greater than or
equal to 500,000. The filter is set on lines 41-46. The color of the polygon fill is the only other difference in
this rule, which is set to a dark green (#009900) on line 49.

Zoom-based polygon

This example alters the style of the polygon at different zoom levels.

Code

View and download the full “Zoom-based polygon” SLD

1 <FeatureTypeStyle>
2 <Rule>
3 <Name>Large</Name>
4 <MaxScaleDenominator>100000000</MaxScaleDenominator>
5 <PolygonSymbolizer>
6 <Fill>
7 <CssParameter name="fill">#0000CC</CssParameter>
8 </Fill>
9 <Stroke>

10 <CssParameter name="stroke">#000000</CssParameter>
11 <CssParameter name="stroke-width">7</CssParameter>
12 </Stroke>
13 </PolygonSymbolizer>
14 <TextSymbolizer>

290 Chapter 8. Styling

GeoServer User Manual, Release 2.1-RC4

Figure 8.36: Zoom-based polygon: Zoomed in

8.2. SLD Cookbook 291

GeoServer User Manual, Release 2.1-RC4

Figure 8.37: Zoom-based polygon: Partially zoomed

292 Chapter 8. Styling

GeoServer User Manual, Release 2.1-RC4

Figure 8.38: Zoom-based polygon: Zoomed out

8.2. SLD Cookbook 293

GeoServer User Manual, Release 2.1-RC4

15 <Label>
16 <ogc:PropertyName>name</ogc:PropertyName>
17 </Label>
18
19 <CssParameter name="font-family">Arial</CssParameter>
20 <CssParameter name="font-size">14</CssParameter>
21 <CssParameter name="font-style">normal</CssParameter>
22 <CssParameter name="font-weight">bold</CssParameter>
23
24 <LabelPlacement>
25 <PointPlacement>
26 <AnchorPoint>
27 <AnchorPointX>0.5</AnchorPointX>
28 <AnchorPointY>0.5</AnchorPointY>
29 </AnchorPoint>
30 </PointPlacement>
31 </LabelPlacement>
32 <Fill>
33 <CssParameter name="fill">#FFFFFF</CssParameter>
34 </Fill>
35 </TextSymbolizer>
36 </Rule>
37 <Rule>
38 <Name>Medium</Name>
39 <MinScaleDenominator>100000000</MinScaleDenominator>
40 <MaxScaleDenominator>200000000</MaxScaleDenominator>
41 <PolygonSymbolizer>
42 <Fill>
43 <CssParameter name="fill">#0000CC</CssParameter>
44 </Fill>
45 <Stroke>
46 <CssParameter name="stroke">#000000</CssParameter>
47 <CssParameter name="stroke-width">4</CssParameter>
48 </Stroke>
49 </PolygonSymbolizer>
50 </Rule>
51 <Rule>
52 <Name>Small</Name>
53 <MinScaleDenominator>200000000</MinScaleDenominator>
54 <PolygonSymbolizer>
55 <Fill>
56 <CssParameter name="fill">#0000CC</CssParameter>
57 </Fill>
58 <Stroke>
59 <CssParameter name="stroke">#000000</CssParameter>
60 <CssParameter name="stroke-width">1</CssParameter>
61 </Stroke>
62 </PolygonSymbolizer>
63 </Rule>
64 </FeatureTypeStyle>

Details

It is often desirable to make shapes larger at higher zoom levels when creating a natural-looking map. This
example varies the thickness of the lines according to the zoom level. Polygons already do this by nature of
being two dimensional, but another way to adjust styling of polygons based on zoom level is to adjust the

294 Chapter 8. Styling

GeoServer User Manual, Release 2.1-RC4

thickness of the stroke (to be larger as the map is zoomed in) or to limit labels to only certain zoom levels.
This is ensures that the size and quantity of strokes and labels remains legible and doesn’t overshadow the
polygons themselves.

Zoom levels (or more accurately, scale denominators) refer to the scale of the map. A scale denominator of
10,000 means the map has a scale of 1:10,000 in the units of the map projection.

Note: Determining the appropriate scale denominators (zoom levels) to use is beyond the scope of this
example.

This style contains three rules, defined as follows:

Rule order Rule name Scale denominator Stroke width Label display?
1 Large 1:100,000,000 or less 7 Yes
2 Medium 1:100,000,000 to 1:200,000,000 4 No
3 Small Greater than 1:200,000,000 2 No

The first rule, on lines 2-36, is for the smallest scale denominator, corresponding to when the view is
“zoomed in”. The scale rule is set on line 40 such that the rule will apply only where the scale denom-
inator is 100,000,000 or less. Line 7 defines the fill as blue (#0000CC). Note that the fill is kept constant
across all rules regardless of the scale denominator. As in the Polygon with default label or Polygon with styled
label examples, the rule also contains a <TextSymbolizer> at lines 14-35 for drawing a text label on top of
the polygon. Lines 19-22 set the font information to be Arial, 14 pixels, and bold with no italics. The label is
centered both horizontally and vertically along the centroid of the polygon on by setting <AnchorPointX>
and <AnchorPointY> to both be 0.5 (or 50%) on lines 27-28. Finally, the color of the font is set to white
(#FFFFFF) in line 33.

The second rule, on lines 37-50, is for the intermediate scale denominators, corresponding to when the view
is “partially zoomed”. The scale rules on lines 39-40 set the rule such that it will apply to any map with a
scale denominator between 100,000,000 and 200,000,000. (The <MinScaleDenominator> is inclusive and
the <MaxScaleDenominator> is exclusive, so a zoom level of exactly 200,000,000 would not apply here.)
Aside from the scale, there are two differences between this rule and the first: the width of the stroke is set
to 4 pixels on line 47 and a <TextSymbolizer> is not present so that no labels will be displayed.

The third rule, on lines 51-63, is for the largest scale denominator, corresponding to when the map is
“zoomed out”. The scale rule is set on line 53 such that the rule will apply to any map with a scale de-
nominator of 200,000,000 or greater. Again, the only differences between this rule and the others are the
width of the lines, which is set to 1 pixel on line 60, and the absence of a <TextSymbolizer> so that no
labels will be displayed.

The resulting style produces a polygon stroke that gets larger as one zooms in and labels that only display
when zoomed in to a sufficient level.

8.2.4 Rasters

Rasters are geographic data displayed in a grid. They are similar to image files such as PNG files, except
that instead of each point containing visual information, each point contains geographic information in
numerical form. Rasters can be thought of as a georeferenced table of numerical values.

One example of a raster is a Digital Elevation Model (DEM) layer, which has elevation data encoded nu-
merically at each georeferenced data point.

Warning: The code examples shown on this page are not the full SLD code, as they omit the SLD
header and footer information for the sake of brevity. Please use the links to download the full SLD for
each example.

8.2. SLD Cookbook 295

GeoServer User Manual, Release 2.1-RC4

Example raster

The raster layer that is used in the examples below contains elevation data for a fictional world. The data
is stored in EPSG:4326 (longitude/latitude) and has a data range from 70 to 256. If rendered in grayscale,
where minimum values are colored black and maximum values are colored white, the raster would look
like this:

Figure 8.39: Raster file as rendered in grayscale

Download the raster shapefile

Two-color gradient

This example shows a two-color style with green at lower elevations and brown at higher elevations.

Code

View and download the full “Two-color gradient” SLD

1 <FeatureTypeStyle>
2 <Rule>
3 <RasterSymbolizer>
4 <ColorMap>
5 <ColorMapEntry color="#008000" quantity="70" />
6 <ColorMapEntry color="#663333" quantity="256" />
7 </ColorMap>
8 </RasterSymbolizer>
9 </Rule>

10 </FeatureTypeStyle>

296 Chapter 8. Styling

GeoServer User Manual, Release 2.1-RC4

Figure 8.40: Two-color gradient

Details

There is one <Rule> in one <FeatureTypeStyle> for this example, which is the simplest possible
situation. All subsequent examples will share this characteristic. Styling of rasters is done via the
<RasterSymbolizer> tag (lines 3-8).

This example creates a smooth gradient between two colors corresponding to two elevation values. The
gradient is created via the <ColorMap> on lines 4-7. Each entry in the <ColorMap> represents one entry or
anchor in the gradient. Line 5 sets the lower value of 70 via the quantity parameter, which is styled a dark
green (#008000). Line 6 sets the upper value of 256 via the quantity parameter again, which is styled
a dark brown (#663333). All data values in between these two quantities will be linearly interpolated: a
value of 163 (the midpoint between 70 and 256) will be colored as the midpoint between the two colors (in
this case approximately #335717, a muddy green).

Transparent gradient

This example creates the same two-color gradient as in the Two-color gradient as in the example above but
makes the entire layer mostly transparent by setting a 30% opacity.

Code

View and download the full “Transparent gradient” SLD

1 <FeatureTypeStyle>
2 <Rule>
3 <RasterSymbolizer>
4 <Opacity>0.3</Opacity>
5 <ColorMap>
6 <ColorMapEntry color="#008000" quantity="70" />

8.2. SLD Cookbook 297

GeoServer User Manual, Release 2.1-RC4

Figure 8.41: Transparent gradient

7 <ColorMapEntry color="#663333" quantity="256" />
8 </ColorMap>
9 </RasterSymbolizer>

10 </Rule>
11 </FeatureTypeStyle>

Details

This example is similar to the Two-color gradient example save for the addition of line 4, which sets the
opacity of the layer to 0.3 (or 30% opaque). An opacity value of 1 means that the shape is drawn 100%
opaque, while an opacity value of 0 means that the shape is rendered as completely transparent. The value
of 0.3 means that the the raster partially takes on the color and style of whatever is drawn beneath it. Since
the background is white in this example, the colors generated from the <ColorMap> look lighter, but were
the raster imposed on a dark background the resulting colors would be darker.

Brightness and contrast

This example normalizes the color output and then increases the brightness by a factor of 2.

Code

View and download the full “Brightness and contrast” SLD

1 <FeatureTypeStyle>
2 <Rule>
3 <RasterSymbolizer>
4 <ContrastEnhancement>

298 Chapter 8. Styling

GeoServer User Manual, Release 2.1-RC4

Figure 8.42: Brightness and contrast

5 <Normalize />
6 <GammaValue>0.5</GammaValue>
7 </ContrastEnhancement>
8 <ColorMap>
9 <ColorMapEntry color="#008000" quantity="70" />

10 <ColorMapEntry color="#663333" quantity="256" />
11 </ColorMap>
12 </RasterSymbolizer>
13 </Rule>
14 </FeatureTypeStyle>

Details

This example is similar to the Two-color gradient, save for the addition of the <ContrastEnhancement>
tag on lines 4-7. Line 5 normalizes the output by increasing the contrast to its maximum extent. Line 6
then adjusts the brightness by a factor of 0.5. Since values less than 1 make the output brighter, a value of
0.5 makes the output twice as bright.

As with previous examples, lines 8-11 determine the <ColorMap>, with line 9 setting the lower bound (70)
to be colored dark green (#008000) and line 10 setting the upper bound (256) to be colored dark brown
(#663333).

Three-color gradient

This example creates a three-color gradient in primary colors. In addition, the gradient doesn’t span the
entire range of data values, leading some data not to be rendered at all.

8.2. SLD Cookbook 299

GeoServer User Manual, Release 2.1-RC4

Figure 8.43: Three-color gradient

Code

View and download the full “Three-color gradient” SLD

1 <FeatureTypeStyle>
2 <Rule>
3 <RasterSymbolizer>
4 <ColorMap>
5 <ColorMapEntry color="#0000FF" quantity="150" />
6 <ColorMapEntry color="#FFFF00" quantity="200" />
7 <ColorMapEntry color="#FF0000" quantity="250" />
8 </ColorMap>
9 </RasterSymbolizer>

10 </Rule>
11 </FeatureTypeStyle>

Details

This example creates a three-color gradient based on a <ColorMap> with three entries on lines 4-8: line 5
specifies the lower bound (150) be styled in blue (#0000FF), line 6 specifies an intermediate point (200) be
styled in yellow (#FFFF00), and line 7 specifies the upper bound (250) be styled in red (#FF0000).

Since our data values run between 70 and 256, some data points are not accounted for in this style. Those
values below the lowest entry in the color map (the range from 70 to 149) are styled the same color as the
lower bound, in this case blue. On the other hand, values above the upper bound in the color map (the
range from 251 to 256) are not rendered at all.

300 Chapter 8. Styling

GeoServer User Manual, Release 2.1-RC4

Alpha channel

This example creates an “alpha channel” effect such that higher values are increasingly transparent.

Figure 8.44: Alpha channel

Code

View and download the full “Alpha channel” SLD

1 <FeatureTypeStyle>
2 <Rule>
3 <RasterSymbolizer>
4 <ColorMap>
5 <ColorMapEntry color="#008000" quantity="70" />
6 <ColorMapEntry color="#008000" quantity="256" opacity="0"/>
7 </ColorMap>
8 </RasterSymbolizer>
9 </Rule>

10 </FeatureTypeStyle>

Details

An alpha channel is another way of referring to variable transparency. Much like how a gradient maps
values to colors, each entry in a <ColorMap> can have a value for opacity (with the default being 1.0 or
completely opaque).

In this example, there is a <ColorMap> with two entries: line 5 specifies the lower bound of 70 be colored
dark green (#008000), while line 6 specifies the upper bound of 256 also be colored dark green but with
an opacity value of 0. This means that values of 256 will be rendered at 0% opacity (entirely transparent).

8.2. SLD Cookbook 301

GeoServer User Manual, Release 2.1-RC4

Just like the gradient color, the opacity is also linearly interpolated such that a value of 163 (the midpoint
between 70 and 256) is rendered at 50% opacity.

Discrete colors

This example shows a gradient that is not linearly interpolated but instead has values mapped precisely to
one of three speci?c colors.

Note: This example leverages an SLD extension in GeoServer. Discrete colors are not part of the standard
SLD 1.0 specification.

Figure 8.45: Discrete colors

Code

View and download the full “Discrete colors” SLD

1 <FeatureTypeStyle>
2 <Rule>
3 <RasterSymbolizer>
4 <ColorMap type="intervals">
5 <ColorMapEntry color="#008000" quantity="150" />
6 <ColorMapEntry color="#663333" quantity="256" />
7 </ColorMap>
8 </RasterSymbolizer>
9 </Rule>

10 </FeatureTypeStyle>

302 Chapter 8. Styling

GeoServer User Manual, Release 2.1-RC4

Details

Sometimes color bands in discrete steps are more appropriate than a color gradient. The
type="intervals" parameter added to the <ColorMap> on line 4 sets the display to output discrete
colors instead of a gradient. The values in each entry correspond to the upper bound for the color band
such that colors are mapped to values less than the value of one entry but greater than or equal to the next
lower entry. For example, line 5 colors all values less than 150 to dark green (#008000) and line 6 colors
all values less than 256 but greater than or equal to 150 to dark brown (#663333).

Many color gradient

This example shows an eight color gradient.

Figure 8.46: Many color gradient

Code

View and download the full “Many color gradient” SLD

1 <FeatureTypeStyle>
2 <Rule>
3 <RasterSymbolizer>
4 <ColorMap>
5 <ColorMapEntry color="#000000" quantity="95" />
6 <ColorMapEntry color="#0000FF" quantity="110" />
7 <ColorMapEntry color="#00FF00" quantity="135" />
8 <ColorMapEntry color="#FF0000" quantity="160" />
9 <ColorMapEntry color="#FF00FF" quantity="185" />

10 <ColorMapEntry color="#FFFF00" quantity="210" />
11 <ColorMapEntry color="#00FFFF" quantity="235" />
12 <ColorMapEntry color="#FFFFFF" quantity="256" />

8.2. SLD Cookbook 303

GeoServer User Manual, Release 2.1-RC4

13 </ColorMap>
14 </RasterSymbolizer>
15 </Rule>
16 </FeatureTypeStyle>

Details

There is no limit on the amount of entries that can be contained in a <ColorMap> (lines 4-13). This example
has eight entries:

Entry number Value Color RGB code
1 95 Black #000000
2 110 Blue #0000FF
3 135 Green #00FF00
4 160 Red #FF0000
5 185 Purple #FF00FF
6 210 Yellow #FFFF00
7 235 Cyan #00FFFF
8 256 White #FFFFFF

8.3 SLD Reference

A symbolizer specifies how data should be visualized. There are 5 types of symbolizers:
PointSymbolizer, which is used to portray point data; LineSymbolizer, which is used to portray
line data; PolygonSymbolizer, which is used to portray polygon data; RasterSymbolizer, which is
used to portray raster data; and TextSymbolizer, which is used to portray text labels.

Warning: Intro for filters and scale.

8.3.1 PointSymbolizer

The PointSymbolizer styles points, Points are elements that contain only position information.

Syntax

The outermost element is the <Graphic> tag. This determines the type of visualization. There are five
possible tags to include inside the <Graphic> tag:

304 Chapter 8. Styling

GeoServer User Manual, Release 2.1-RC4

Tag Required? Description
<ExternalGraphic>No (when using

<Mark>)
Specifies an image file to use as the symbolizer.

<Mark> No (when using
<ExternalGraphic>)

Specifies a common shape to use as the symbolizer.

<Opacity> No Determines the opacity (transparency) of symbolizers. Values range
from 0 (completely transparent) to 1 (completely opaque). Default is
1.

<Size> Yes Determines the size of the symbolizer in pixels. When used with an
image file, this will specify the height of the image, with the width
scaled accordingly.

<Rotation>No Determines the rotation of the graphic in degrees. The rotation
increases in the clockwise direction. Negative values indicate
counter-clockwise rotation. Default is 0.

Within the <ExternalGraphic> tag, there are also additional tags:

Tag Re-
quired?

Description

<OnlineResource>Yes The location of the image file. Can be either a URL or a local path
relative to the SLD.

<Format> Yes The MIME type of the image format. Most standard web image
formats are supported.

Within the <Mark> tag, there are also additional tags:

Tag Required? Description
<WellKnownName>Yes The name of the common shape. Options are circle, square,

triangle, star, cross, or x. Default is square.
<Fill> No (when

using
<Stroke>)

Specifies how the symbolizer should be filled. Options are a
<CssParameter name="fill"> specifying a color in the form
#RRGGBB, or <GraphicFill> for a repeated graphic.

<Stroke> No (when
using
<Fill>)

Specifies how the symbolizer should be drawn on its border. Options are
a <CssParameter name="fill"> specifying a color in the form
#RRGGBB or <GraphicStroke> for a repeated graphic.

Example

Consider the following symbolizer taken from the Simple Point example in the Points section in the SLD
Cookbook.

1 <PointSymbolizer>
2 <Graphic>
3 <Mark>
4 <WellKnownName>circle</WellKnownName>
5 <Fill>
6 <CssParameter name="fill">#FF0000</CssParameter>
7 </Fill>
8 </Mark>
9 <Size>6</Size>

10 </Graphic>
11 </PointSymbolizer>

The symbolizer contains a <Graphic> tag, which is required. Inside this tag is the <Mark> tag and <Size>
tag, which are the minimum required tags inside <Graphic> (when not using the <ExternalGraphic>

8.3. SLD Reference 305

GeoServer User Manual, Release 2.1-RC4

tag). The <Mark> tag contains the <WellKnownName> tag and a <Fill> tag. No other tags are required.
In summary, this example specifies the following:

1. Data will be rendered as points

2. Points will be rendered as circles

3. Circles will be rendered with a diameter of 6 pixels and filled with the color red

Further examples can be found in the Points section of the SLD Cookbook.

8.3.2 LineSymbolizer

The LineSymbolizer styles lines. Lines are one-dimensional geometry elements that contain position and
length. Lines can be comprised of multiple line segments.

Syntax

The outermost tag is the <Stroke> tag. This tag is required, and determines the visualization of the line.
There are three possible tags that can be included inside the <Stroke> tag.

Tag Required? Description
<GraphicFill> No Renders the pixels of the line with a repeated pattern.
<GraphicStroke> No Renders the line with a repeated linear graphic.
<CssParameter> No Determines the stroke styling parameters.

When using the <GraphicStroke> and <GraphicFill> tags, it is required to insert the <Graphic> tag
inside them. The syntax for this tag is identical to that mentioned in the PointSymbolizer section above.

Within the <CssParameter> tag, there are also additional parameters that go inside the actual tag:

Parameter Re-
quired?

Description

name="stroke" No Specifies the solid color given to the line, in the form #RRGGBB. Default is
black (#000000).

name="stroke-width"No Specifies the width of the line in pixels. Default is 1.
name="stroke-opacity"No Specifies the opacity (transparency) of the line. possible values are between

0 (completely transparent) and 1 (completely opaque). Default is 1.
name="stroke-linejoin"No Determines how lines are rendered at intersections of line segments.

Possible values are mitre (sharp corner), round (rounded corner), and
bevel (diagonal corner). Default is mitre.

name="stroke-linecap"No Determines how lines are rendered at ends of line segments. Possible values
are butt (sharp square edge), round (rounded edge), and square (slightly
elongated square edge). Default is butt.

name="stroke-dasharray"No Encodes a dash pattern as a series of numbers separated by spaces.
Odd-indexed numbers (first, third, etc) determine the length in pxiels to
draw the line, and even-indexed numbers (second, fourth, etc) determine
the length in pixels to blank out the line. Default is an unbroken line.

name="stroke-dashoffset"No Specifies the distance in pixels into the dasharray pattern at which to start
drawing. Default is 0.

Warning: Maybe a screenshot of the different linecaps etc?

306 Chapter 8. Styling

GeoServer User Manual, Release 2.1-RC4

Example

8.3.3 PolygonSymbolizer

The LineSymbolizer styles polygons. Lines are two-dimensional geometry elements. They can contain
styling information about their border (stroke) and their fill.

Syntax

A <PolygonSymbolizer> can have two outermost tags:

Tag Required? Description
<Fill> No (when using <Stroke>) Determines the styling for the fill of the polygon.
<Stroke> No (when using <Fill>) Determines the styling for the stroke of the polygon.

The details for the <Stroke> tag are identical to that mentioned in the LineSymbolizer section above.

Within the <Fill> tag, there are additional tags:

Tag Required? Description
<GraphicFill> No Renders the fill of the polygon with a repeated pattern.
<CssParameter> No Determines the fill styling parameters.

When using the <GraphicFill> tag, it is required to insert the <Graphic> tag inside it. The syntax for
this tag is identical to that mentioned in the PointSymbolizer section above.

Within the <CssParameter> tag, there are also additional parameters that go inside the actual tag:

Parameter Re-
quired?

Description

name="fill" No Specifies the fill color for the polygon, in the form #RRGGBB. Default is grey
(#808080).

name="fill-opacity"No Specifies the opacity (transparency) of the fill of the polygon. Possible values
are between 0 (completely transparent) and 1 (completely opaque). Default is
1.

Example

Consider the following symbolizer taken from the Simple Point example in the Polygons section in the SLD
Cookbook.

1 <PolygonSymbolizer>
2 <Fill>
3 <CssParameter name="fill">#000080</CssParameter>
4 </Fill>
5 </PolygonSymbolizer>

This symbolizer contains only a <Fill> tag. Inside this tag is a <CssParameter> that specifies a fill color
for the polygont o be #000080, or a muted blue.

Further examples can be found in the Polygons section of the SLD Cookbook.

8.3. SLD Reference 307

GeoServer User Manual, Release 2.1-RC4

8.3.4 Raster Symbolizer

Introduction

GeoServer supports the ability to display raster data in addition to vector data.

Raster data is not merely a picture, rather it can be thought of as a grid of georeferenced information, much
like a graphic is a grid of visual information (with combination of reds, greens, and blues). Unlike graphics,
which only contain visual data, each point/pixel in a raster grid can have lots of different attributes, with
possibly none of them having an inherently visual component.

With the above in mind, one needs to choose how to visualize the data, and this, like in all other cases,
is done by using an SLD. The analogy to vector data is evident in the naming of the tags used. Vectors,
consisting of points, line, and polygons, are styled by using the <PointSymbolizer>, <LineSymbolizer>,
and <PolygonSymbolizer> tags. It is therefore not very surprising that raster data is styled with the tag
<RasterSymbolizer>.

Elements and Syntax

The following elements are available to be used as parameters inside <RasterSymbolizer>.

• <Opacity>

• <ColorMap>

• <ChannelSelection>

• <ContrastEnhancement>

• <ShadedRelief>

• <OverlapBehavior>

• <ImageOutline>

Notice that not all the above are actually implemented in the current version of the GeoServer.

Opacity

This element sets the transparency level for the entire dataset. As is standard, the values range from zero
(0) to one (1), with zero being totally transparent, and one being not transparent at all. The syntax for
<Opacity> is very simple:

<Opacity>0.5</Opacity>

where, in this case, the raster would be displayed at 50% opacity.

ColorMap

The <ColorMap> element sets rules for color gradients based on the quantity attribute. This quantity refers
to the magnitude of the value of a data point. At its simplest, one could create two color map entries
(the element called <ColorMapEntry>, one with a color for the “bottom” of the dataset, and another with a
color for the “top” of the dataset. The colors in between will be automatically interpolated with the quantity
values in between, making creating color gradients easy. One can also fine tune the color map by adding
additional entries, which is handy if the dataset has more discrete values rather than a gradient. In that
case, one could add an entry for each value to be set to a different color. In all cases, the color is denoted in
standard hexadecimal RGB format (#RRGGBB). In addition to color and quantity, ColorMapEntry elements

308 Chapter 8. Styling

GeoServer User Manual, Release 2.1-RC4

can also have opacity and label, the former which could be used instead of the global value mentioned
previously, and the latter which could beused for legends.

For example a simple ColorMap can be:

<ColorMap>
<ColorMapEntry color="#323232" quantity="-300" label="label1" opacity="1"/>
<ColorMapEntry color="#BBBBBB" quantity="200" label="label2" opacity="1"/>

</ColorMap>

This example would create a color gradient from #323232 color to #BBBBBB color using quantity values
-300 to 200:

<ColorMap>
<ColorMapEntry color="#FFCC32" quantity="-300" label="label1" opacity="0"/>
<ColorMapEntry color="#3645CC" quantity="0" label="label2" opacity="1"/>
<ColorMapEntry color="#CC3636" quantity="100" label="label3" opacity="1"/>
<ColorMapEntry color="#BBBBBB" quantity="200" label="label4" opacity="1"/>

</ColorMap>

This example would create a color gradient from #FFCC32 color through #BBBBBB color running through
#3645CC color and #CC3636 color. Here, though, #FFCC32 color would be transparent (simulating an alpha
channel). Notice that default opacity, when not specified, is 1, which means opaque.

Two attributes can be created in ColorMap root node like ‘type’ and ‘extended’.

The ‘type’ attribute specifies the kind of ColorMap to use. There are three different types of ColorMaps that
can be specified througth this attribute: ramp, intervals and values.

The ‘ramp’ is the default ColorMap type and the outcome is like the one presented at the beginning of this
section (if into the ColorMap tag the attribute ‘type’ is not specified, the default value is ‘ramp’).

The ‘values’ means that only the specified entry quantities will be rendered, i.e. no color interpolation is
applied between the entries.

The following example can clarify this aspect:

8.3. SLD Reference 309

GeoServer User Manual, Release 2.1-RC4

310 Chapter 8. Styling

GeoServer User Manual, Release 2.1-RC4

<ColorMap type="values">
<ColorMapEntry color="#EEBE2F" quantity="-300" label="label" opacity="0"/>
<ColorMapEntry color="#2851CC" quantity="0" label="values" opacity="1"/>
<ColorMapEntry color="#211F1F" quantity="50" label="label" opacity="1"/>
<ColorMapEntry color="#EE0F0F" quantity="100" label="label" opacity="1"/>
<ColorMapEntry color="#AAAAAA" quantity="200" label="label" opacity="1"/>
<ColorMapEntry color="#6FEE4F" quantity="250" label="label" opacity="1"/>
<ColorMapEntry color="#3ECC1B" quantity="300" label="label" opacity="1"/>
<ColorMapEntry color="#886363" quantity="350" label="label" opacity="1"/>
<ColorMapEntry color="#5194CC" quantity="400" label="label" opacity="1"/>
<ColorMapEntry color="#2C58DD" quantity="450" label="label" opacity="1"/>
<ColorMapEntry color="#DDB02C" quantity="600" label="label" opacity="1"/>

</ColorMap>

The ‘intervals’ value means that every interval defined by two entries will be colorized using the value of
the first entrie, i.e. no color interpolation is applied between the intervals:

<ColorMap type="intervals" extended="true">
<ColorMapEntry color="#EEBE2F" quantity="-300" label="label" opacity="0"/>
...
<ColorMapEntry color="#DDB02C" quantity="600" label="label" opacity="1"/>

</ColorMap>

The ‘extended’ attribute allows ColorMap to compiute gradients using 256 or 65536 colors; extended=false
means that the color scale is calculated on 8 bit, else 16 bit if the value is true.

The difference between ramp, values and intervals values is also visible into raster legend. In order to get
the raster legend from GeoServer the typically request is:

http://localhost:8080/geoserver/wms?REQUEST=GetLegendGraphic&VERSION=1.0.0&&STYLE=raster100&FORMAT=image/png&WIDTH=50&HEIGHT=20&LEGEND_OPTIONS=forceRule:true&LAYER=it.geosolutions:di08032_da

the results are:

8.3. SLD Reference 311

GeoServer User Manual, Release 2.1-RC4

312 Chapter 8. Styling

GeoServer User Manual, Release 2.1-RC4

ChannelSelection

This element specifies which color channel to access in the dataset. A dataset may contain standard three-
channel colors (red, green, and blue channels) or one grayscale channel. Using <ChannelSelection> allows
the mapping of a dataset channel to either a red, green, blue, or gray channel:

<ChannelSelection>
<RedChannel>
<SourceChannelName>1</SourceChannelName>
</RedChannel>
<GreenChannel>
<SourceChannelName>2</SourceChannelName>
</GreenChannel>
<BlueChannel>
<SourceChannelName>3</SourceChannelName>
</BlueChannel>

</ChannelSelection>

The above would map source channels 1, 2,and 3 to the red, green, and blue Channels, respectively.

This is the result of gray ChannelSelection operation applied to an RGB image and re-colorized through a
ColorMap:

<RasterSymbolizer>
<Opacity>1.0</Opacity>
<ChannelSelection>

<GrayChannel>
<SourceChannelName>11</SourceChannelName>

</GrayChannel>
</ChannelSelection>
<ColorMap extended="true">

<ColorMapEntry color="#0000ff" quantity="3189.0"/>

8.3. SLD Reference 313

GeoServer User Manual, Release 2.1-RC4

<ColorMapEntry color="#009933" quantity="6000.0"/>
<ColorMapEntry color="#ff9900" quantity="9000.0" />
<ColorMapEntry color="#ff0000" quantity="14265.0"/>

</ColorMap>
</RasterSymbolizer>

ContrastEnhancement

The <ContrastEnhancement> element is used in color channels to adjust the relative brightness of the data
in that channel. There are three types of enhancements possible.

• Normalize

• Histogram

• GammaValue

Normalize means to expand the contrast so that the minimum quantity is mapped to minimum brightness,
and the maximum quantity is mapped to maximum brightness. Histogram is similar to Normalize, but
the algorithm used attempts to produce an image with an equal number of pixels at all brightness levels.
Finally, GammaValue is a scaling factor that adjusts the brightness of the data, with a value less than one
(1) darkening the image, and a value greater than one (1) brightening it. (Normalize and Histogram do
not have any parameters.) One can use <ContrastEnhancement> on a specific channel (say red only) as
opposed to globally, if it is desired. In this way, different enhancements can be used on each channel:

<ContrastEnhancement>
<Normalize/>

</ContrastEnhancement>

314 Chapter 8. Styling

GeoServer User Manual, Release 2.1-RC4

<ContrastEnhancement>
<Histogram/>

</ContrastEnhancement>

These examples turn on Normalize and Histogram, respectively:

<ContrastEnhancement>
<GammaValue>2</GammaValue>

</ContrastEnhancement>

The above increases the brightness of the data by a factor of two.

ShadedRelief

Warning: Support for this elements has not been implemented yet.

The <ShadedRelief> element can be used to create a 3-D effect, by selectively adjusting brightness. This is
a nice effect to use on an elevation dataset. There are two types of shaded relief possible.

• BrightnessOnly

• ReliefFactor

BrightnessOnly, which takes no parameters, applies shading in WHAT WAY? ReliefFactor sets the amount
of exaggeration of the shading (for example, to make hills appear higher). According to the OGC SLD
specification, a value of around 55 gives “reasonable results” for Earth-based datasets:

<ShadedRelief>
<BrightnessOnly />
<ReliefFactor>55</ReliefFactor>

</ShadedRelief>

The above example turns on Relief shading in WHAT WAY?

OverlapBehavior

Warning: Support for this elements has not been implemented yet.

Sometimes raster data is comprised of multiple image sets. Take, for example, a satellite view of the Earth
at night . As all of the Earth can’t be in nighttime at once, a composite of multiple images are taken. These
images are georeferenced, and pieced together to make the finished product. That said, it is possible that
two images from the same dataset could overlap slightly, and the OverlapBehavior element is designed to
determine how this is handled. There are four types of OverlapBehavior:

• AVERAGE

• RANDOM

• LATEST_ON_TOP

• EARLIEST_ON_TOP

8.3. SLD Reference 315

http://apod.nasa.gov/apod/ap001127.html
http://apod.nasa.gov/apod/ap001127.html

GeoServer User Manual, Release 2.1-RC4

AVERAGE takes each overlapping point and displays their average value. RANDOM determines
which image gets displayed according to chance (which can sometimes result in a crisper image). LAT-
EST_ON_TOP and EARLIEST_ON_TOP sets the determining factor to be the internal timestamp on each
image in the dataset. None of these elements have any parameters, and are all called in the same way:

<OverlapBehavior>
<AVERAGE />

</OverlapBehavior>

The above sets the OverlapBehavior to AVERAGE.

ImageOutline

Warning: Support for this elements has not been implemented yet.

Given the situation mentioned previously of the image composite, it is possible to style each image so as
to have an outline. One can even set a fill color and opacity of each image; a reason to do this would be
to “gray-out” an image. To use ImageOutline, you would define a <LineSymbolizer> or <PolygonSymbol-
izer> inside of the element:

<ImageOutline>
<LineSymbolizer>
<Stroke>

<CssParameter name="stroke">#0000ff</CssParameter>
</Stroke>
</LineSymbolizer>

</ImageOutline>

The above would create a border line (colored blue with a one pixel default thickness) around each image
in the dataset.

8.3.5 TextSymbolizer

The TextSymbolizer specifies text labels.

Syntax

A <TextSymbolizer> contains the following tags:

Tag Re-
quired?

Description

<Label> Yes Specifies the content of the text label
 No Specifies the font information for the labels.
<LabelPlacement>No Sets the position of the label relative its associate feature.
<Halo> No Creates a colored background around the text label, for low contrast

situations.
<Fill> No Determines the fill color of the text label.

Each of the above tags have additional sub tags. For the <Label> tag:

Tag Required? Description

316 Chapter 8. Styling

GeoServer User Manual, Release 2.1-RC4

Within the tag, the <CssParameter> tag is the only tag included. There are four types of param-
eters for this tag, each included inside the <CssParameter> tag:

Parameter Re-
quired?

Description

name="font-family"No Determines the family name of the font to use for the label. Default is
Times.

name="font-style"No Determines the style of the font. Options are normal, italic, and
oblique. Default is normal.

name="font-weight"No Determines the weight of the font. Options are normal and bold.
Default is normal.

name="font-size"No Determines the size of the font in pixels. Default is 10.

Within the <LabelPlacement> tag, there are many tags for specifying the placement of the label:

Tag Required? Description

Within the <Halo> tag, there are two tags to specify the details of the halo:

Tag Required? Description
<Radius> No Sets the size of the halo radius in pixels. Default is 1.
<Fill> No Sets the color of the halo in the form of #RRGGBB. Default is white (#FFFFFF).

The <Fill> tag is identical to that described in the WHERE~? above.

Example

8.3.6 Labeling

Controlling Label Placement

Controlling where the WMS server places labels with SLD is bit complex. The SLD specification only
defines the most basic way of controlling placement explicitly says that defining more control is “a real can
of worms”. Geoserver fully supports the SLD specification plus adds a few extra parameters so you can
make pretty maps.

Basic SLD Placement

The SLD specification indicates two types of LabelPlacement:

• for Point Geometries (“PointPlacement”)

• for Linear (line) geometries (“LinePlacement”)

Note: Relative to Where?

See below for the actual algorithm details, but:

• Polygons are intersected with the viewport and the centroid is used.

• Lines are intersected with the viewport and the middle of the line is used.

8.3. SLD Reference 317

GeoServer User Manual, Release 2.1-RC4

Code

<xsd:element name="PointPlacement">
<xsd:complexType>

<xsd:sequence>
<xsd:element ref="sld:AnchorPoint" minOccurs="0"/>
<xsd:element ref="sld:Displacement" minOccurs="0"/>
<xsd:element ref="sld:Rotation" minOccurs="0"/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>
...
<xsd:element name="LinePlacement">

<xsd:complexType>
<xsd:sequence>
<xsd:element ref="sld:PerpendicularOffset" minOccurs="0"/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>

PointPlacement

When you use a <PointPlacement> element, the geometry you are labeling will be reduced to a single point
(usually the “middle” of the geometry - see algorithm below for details). You can control where the label is
relative to this point using the options:

Option Meaning (Name)
Anchor-
Point

This is relative to the LABEL. Using this you can do things such as center the label on top of
the point, have the label to the left of the point, or have the label centered under the point.

Dis-
place-
ment

This is in PIXELS and lets you fine-tune the location of the label.

Rota-
tion

This is the clockwise rotation of the label in degrees.

The best way to understand these is with examples:

AnchorPoint

The anchor point determines where the label is placed relative to the label point. These measurements are
relative to the bounding box of the label. The (x,y) location inside the label’s bounding box (specified by
the AnchorPoint) is placed at the label point.

The anchor point is defined relative to the label’s bounding box. The bottom left is (0,0), the top left is (1,1),
and the middle is (0.5,0.5).

<PointPlacement>
<AnchorPoint>

<AnchorPointX>
0.5
</AnchorPointX>
<AnchorPointY>

318 Chapter 8. Styling

GeoServer User Manual, Release 2.1-RC4

0.5
</AnchorPointY>

</AnchorPoint>
</PointPlacement>

By changing the values, you can control where the label is placed.

(x=0,y=0.5) DEFAULT - place the label to the right of the label point

(x=0.5,y=0.5) - place the centre of the label at the label point

(x=1,y=0.5) - place the label to the left of the label point

(x=0.5,y=0) - place the label centered above the label point

Displacement

Displacement allows fine control of the placement of the label. The displacement values are in pixels and
simply move the location of the label on the resulting image.

<PointPlacement>
<Displacement>
<DisplacementX>

10
</DisplacementX>
<DisplacementY>

0
</DisplacementY>

</Displacement>
</PointPlacement>

displacement of x=10 pixels, compare with anchor point (x=0,y=0.5) above

displacement of y=-10 pixels, compare with anchor point (x=0.5,y=1.0) not shown

Rotation

Rotation is simple - it rotates the label clockwise the number of degrees you specify. See the examples below
for how it interacts with AnchorPoints and displacements.

<Rotation>
45

</Rotation>

simple 45 degrees rotation

45 degrees rotation with anchor point (x=0.5,y=0.5)

45 degrees with 40 pixel X displacement

45 degrees rotation with 40 pixel Y displacement with anchor point (x=0.5,y=0.5)

8.3. SLD Reference 319

GeoServer User Manual, Release 2.1-RC4

LinePlacement

When you are labeling a line (i.e. a road or river), you can specify a <LinePlacement> element. This tells
the labeling system two things: (a) that you want Geoserver to determine the best rotation and placement
for the label (b) a minor option to control how the label is placed relative to the line.

The line placement option is very simple - it only allows you to move a label up-and-down from a line.

<xs:elementname="LinePlacement">
<xs:complexType>
<xs:sequence>

<xs:element ref="sld:PerpendicularOffset" minOccurs="0"/>
</xs:sequence>

</xs:complexType>
</xs:element>
...
<xs:element name="PerpendicularOffset" type="sld:ParameterValueType"/>

This is very similiar to the DisplacementY option (see above).

<LabelPlacement>
<LinePlacement>
<PerpendicularOffset>

10
</PerpendicularOffset>

</LinePlacement>
</LabelPlacement>

PerpendicularOffset=0

PerpendicularOffset=10 pixels

Composing labels from multiple attributes

The <Label> element in TextSymbolizer is said to be mixed, that is, its content can be a mixture of plain text
and OGC Expressions. The mix gets interepreted as a concatenation, this means you can leverage it to get
complex labels out of multiple attributes.

For example, if you want both a state name and its abbreviation to appear in a label, you can do the follow-
ing:

<Label>
<ogc:PropertyName>STATE_NAME</ogc:PropertyName> (<ogc:PropertyName>STATE_ABBR</ogc:PropertyName>)

</Label>

and you’ll get a label such as Texas (TX).

If you need to add extra white space or newline, you’ll stumble into an xml oddity. The whitespace handling
in the Label element is following a XML mandated rule called “collapse”, in which all leading and trailing
whitespaces have to be removed, whilst all whitespaces (and newlines) in the middle of the xml element
are collapsed into a single whitespace.

320 Chapter 8. Styling

GeoServer User Manual, Release 2.1-RC4

So, what if you need to insert a newline or a sequence of two or more spaces between your property names?
Enter CDATA. CDATA is a special XML section that has to be returned to the interpreter as-is, without
following any whitespace handling rule. So, for example, if you wanted to have the state abbreviation
sitting on the next line you’d use the following:

<Label>
<ogc:PropertyName>STATE_NAME</ogc:PropertyName><![CDATA[

]]>(<ogc:PropertyName>STATE_ABBR</ogc:PropertyName>)
</Label>

Geoserver Specific Enhanced Options

The following options are all extensions of the SLD specification. Using these options gives much more
control over how the map looks, since the SLD standard isn’t expressive enough to handle all the options
one might want. In time we hope to have them be an official part of the specification.

Priority Labeling (<Priority>)

GeoServer has extended the standard SLD to also include priority labeling. This allows you to control
which labels are rendered in preference to other labels.

For example, lets assume you have a data set like this:

City Name | population
------------+------------
Yonkers | 197,818
Jersey City | 237,681
Newark | 280,123
New York | 8,107,916

Most people don’t know where “Yonkers” city is, but do know where “New York” city is. On our map,
we want to give “New York” priority so its more likely to be labeled when it’s in conflict (overlapping)
“Yonkers”.

Note: Standard SLD Behavior

If you do not have a <Priority> tag in your SLD then you get the default SLD labeling behavior. This
basically means that if there’s a conflict between two labels, there is no ‘dispute’ mechanism and its random
which label will be displayed.

In our TextSymbolizer we can put an Expression to retreive or calculate the priority for each feature:

<Priority>
<PropertyName>population</PropertyName>

</Priority>

Location of the cities (see population data above)

New York is labeled in preference to the less populated cities. Without priority labeling, “Yonkers” could
be labeled in preference to New York, making a difficult to interpret map.

8.3. SLD Reference 321

GeoServer User Manual, Release 2.1-RC4

Notice that larger cities are more readily named than smaller cities.

Grouping Geometries (<VendorOption name=”group”>)

Sometimes you will have a set of related features that you only want a single label for. The grouping option
groups all features with the same label text, then finds a representative geometry for the group.

Roads data is an obvious example - you only want a single label for all of “main street”, not a label for every
piece of “main street.”

When the grouping option is off (default), grouping is not performed and each geometry is labeled (space
permitting).

With the grouping option on, all the geometries with the same label are grouped together and the label
position is determined from ALL the geometries.

Geome-
try

Representative Geometry

Point Set first point inside the view rectangle is used.
Line Set lines are (a) networked together (b) clipped to the view rectangle (c) middle of the longest

network path is used.
Polygon
Set

polygons are (a) clipped to the view rectangle (b) the centroid of the largest polygon is
used.

<VendorOption name="group">yes</VendorOption>

Warning: Watch out - you could group together two sets of features by accident. For example, you
could create a single group for “Paris” which contains features for Paris (France) and Paris (Texas).

Overlapping and Separating Labels (<VendorOption name=”spaceAround”>)

By default geoserver will not put labels “on top of each other”. By using the spaceAround option you can
allow labels to overlap and you can also add extra space around a label.

<VendorOption name="spaceAround">10</VendorOption>

Default behavior (“0”) - the bounding box of a label cannot overlap the bounding box of another label.

With a negative spaceAround value, overlapping is allowed.

With a spaceAround value of 10 for all TextSymbolizers, each label will be 20 pixels apart from each other
(see below).

NOTE: the value you specify (an integer in pixels) actually provides twice the space that you might expect.
This is because you can specify a spaceAround for one label as 5, and for another label (in another TextSym-
bolizer) as 3. The distance between them will be 8. For two labels in the first symbolizer (“5”) they will each
be 5 pixels apart from each other, for a total of 10 pixels!

Note: Interaction with different values in different TextSymbolizers

322 Chapter 8. Styling

GeoServer User Manual, Release 2.1-RC4

You can have multiple TextSymbolizers in your SLD file, each with a different spaceAround option. This
will normally do what you would think if all your spaceAround options are >=0. If you have negative
values (‘allow overlap’) then these labels can overlap labels that you’ve said should not be overlapping. If
you dont like this behavior, its not too difficult to change - feel free to submit a patch!

followLine

The followLine option forces a label to follow the curve of the line. To use this option place the following
in your <TextSymbolizer>.

<VendorOption name="followLine">true</VendorOption>

It is required to use <LinePlacement> along with this option to ensure that all labels are correctly following
the lines:

<LabelPlacement>
<LinePlacement/>

</LabelPlacement>

maxDisplacement

The maxDisplacement option controls the displacement of the label along a line. Normally GeoServer
would label a line at its center point only, provided the location is not busy with another label, and not label
it at all otherwise. When set, the labeller will search for another location within maxDisplacement pixels
from the pre-computed label point.

When used in conjunction with repeat, the value for maxDisplacement should always be lower than the
value for repeat.

<VendorOption name="maxDisplacement">10</VendorOption>

repeat

The repeat option determines how often GeoServer labels a line. Normally GeoServer would label each
line only once, regardless of their length. Specify a positive value to make it draw the label every repeat
pixels.

<VendorOption name="repeat">100</VendorOption>

labelAllGroup

The labelAllGroup option makes sure that all of the segments in a line group are labeled instead of just the
longest one.

8.3. SLD Reference 323

GeoServer User Manual, Release 2.1-RC4

<VendorOption name="labelAllGroup">true</VendorOption>

maxAngleDelta

Designed to use used in conjuection with followLine, the maxAngleDelta option sets the maximum an-
gle, in degrees, between two subsequent characters in a curved label. Large angles create either visually
disconnected words or overlapping characters. It is advised not to use angles larger than 30.

<VendorOption name="maxAngleDelta">15</VendorOption>

autoWrap

The autoWrap option wraps labels when they exceed the given value, given in pixels. Make sure to give
a dimension wide enough to accommodate the longest word other wise this option will split words over
multiple lines.

<VendorOption name="autoWrap">50</VendorOption>

forceLeftToRight

The labeller always tries to draw labels so that they can be read, meaning the label does not always follow
the line orientation, but sometimes it’s flipped 180° instead to allow for normal reading. This may get in
the way if the label is a directional arrow, and you’re trying to show one way directions (assuming the
geometry is oriented along the one way, and that you have a flag to discern one ways from streets with
both circulations).

The following setting disables label flipping, making the label always follow the natural orientation of the
line being labelled:

<VendorOption name="forceLeftToRigth">false</VendorOption>

conflictResolution

By default labels are subjected to conflict resolution, meaning the renderer will not allow any label to over-
lap with a label that has been drawn already. Setting this parameter to false pull the label out of the conflict
resolution game, meaning the label will be drawn even if it overlaps with other labels, and other labels
drawn after it won’t mind overlapping with it.

<VendorOption name="conflictResolution">false</VendorOption>

324 Chapter 8. Styling

GeoServer User Manual, Release 2.1-RC4

Goodness of Fit

Geoserver will remove labels if they are a particularly bad fit for the geometry they are labeling.

Ge-
ome-
try

Goodness of Fit Algorithm

Point Always returns 1.0 since the label is at the point
Line Always returns 1.0 since the label is always placed on the line.
Poly-
gon

The label is sampled approximately at every letter. The distance from these points to the
polygon is determined and each sample votes based on how close it is to the polygon. (see
LabelCacheDefault#goodnessOfFit())

The default value is 0.5, but it can be modified using:

<VendorOption name="goodnessOfFit">0.3</VendorOption>

Polygon alignment

GeoServer normally tries to place horizontal labels within a polygon, and give up in case the label position
is busy or if the label does not fit enough in the polygon. This options allows GeoServer to try alternate
rotations for the labels.

<VendorOption name="polygonAlign">mbr</VendorOption>

Op-
tion

Description

man-
ual

The default value, only the rotation manually specified in the <Rotation> tag will be used

or-
tho

If the label does not fit horizontally and the polygon is taller than wider the vertical alignement
will also be tried

mbr If the label does not fit horizontally the minimum bounding rectangle will be computed and a
label aligned to it will be tried out as well

8.3.7 Filters

A filter is the mechanism in SLD for specifying predicates. Similar in nature to a “WHERE” clause in SQL,
filters are the language for specifying which styles should be applied to which features in a data set.

The filter language used by SLD is itself an <OGC standard defined in the Filter Encoding specification
freely available.

A filter is used to select a subset of features of a dataset to apply a symbolizer to.

There are three types of filters:

Attribute filters

Attribute filters are used to constrain the non-spatial attributes of a feature. Example

8.3. SLD Reference 325

http://www.opengeospatial.org/standards/filter

GeoServer User Manual, Release 2.1-RC4

1 <PropertyIsEqualTo>
2 <PropertyName>NAME</PropertyName>
3 <Literal>Bob</Literal>
4 </PropertyIsEqualTo>

The above filter selects those features which have a {{NAME}} attribute which has a value of “Bob”. A
variety of equality operators are available:

• PropertyIsEqualTo

• PropertyIsNotEqualTo

• PropertyIsLessThan

• PropertyIsLessThanOrEqualTo

• PropertyIsGreatherThan

• PropertyIsGreatherThanOrEqualTo

• PropertyIsBetween

Spatial filters

Spatial filters used to constrain the spatial attributes of a feature. Example

1 <Intersects>
2 <PropertyName>GEOMETRY</PropertyName>
3 <Literal>
4 <gml:Point>
5 <gml:coordinates>1 1</gml:coordinates>
6 </gml:Point>
7 </Literal>
8 </Intersects>

The above filter selects those features with a geometry that intersects the point (1,1). A variety of spatial
operators are available:

• Intersects

• Equals

• Disjoint

• Within

• Overlaps

• Crosses

• DWithin

• Beyond

• Distance

Logical filters

Logical filters are used to create combinations of filters using the logical operators And, Or, and Not. Ex-
ample

326 Chapter 8. Styling

GeoServer User Manual, Release 2.1-RC4

1 <And>
2 <PropertyIsEqualTo>
3 <PropertyName>NAME</PropertyName>
4 <Literal>Bob</Literal>
5 </PropertyIsEqualTo>
6 <Intersects>
7 <PropertyName>GEOMETRY</PropertyName>
8 <Literal>
9 <gml:Point>

10 <gml:coordinates>1 1</gml:coordinates>
11 </gml:Point>
12 </Literal>
13 </Intersects>
14 </And>

Rules

A rule combines a number of symbolizers with a filter to define the portrayal of a feature. Consider the
following example:

<Rule>
<ogc:Filter>

<ogc:PropertyIsGreaterThan>
<ogc:PropertyName>POPULATION</ogc:PropertyName>
<ogc:Literal>100000</ogc:Literal>

</ogc:PropertyIsGreaterThan>
</ogc:Filter>
<PointSymbolizer>

<Graphic>
<Mark>
<Fill><CssParameter name="fill">#FF0000</CssParameter>

</Mark>
</Graphic>

</PointSymbolizer>
</Rule>

The above rule applies only to features which have a POPULATION attribute greater than 100,000 and
symbolizes then with a red point.

An SLD document can contain many rules. Multiple rule SLD’s are the basis for “thematic styling”. Con-
sider the above example expanded:

<Rule>
<ogc:Filter>

<ogc:PropertyIsGreaterThan>
<ogc:PropertyName>POPULATION</ogc:PropertyName>
<ogc:Literal>100000</ogc:Literal>

</ogc:PropertyIsGreaterThan>
</ogc:Filter>
<PointSymbolizer>

<Graphic>
<Mark>
<Fill><CssParameter name="fill">#FF0000</CssParameter>

</Mark>
</Graphic>

</PointSymbolizer>

8.3. SLD Reference 327

GeoServer User Manual, Release 2.1-RC4

</Rule>
<Rule>

<ogc:Filter>
<ogc:PropertyIsLessThan>

<ogc:PropertyName>POPULATION</ogc:PropertyName>
<ogc:Literal>100000</ogc:Literal>

</ogc:PropertyIsLessThan>
</ogc:Filter>
<PointSymbolizer>

<Graphic>
<Mark>
<Fill><CssParameter name="fill">#0000FF</CssParameter>

</Mark>
</Graphic>

</PointSymbolizer>
</Rule>

The above snippet defines an additional rule which engages when POPULATION is less than 100,000 and
symbolizes the feature as a green point.

Rules support the notion of scale dependence which allows one to specify the scale at which a rule should en-
gage. This allows for different portrayals of a feature based on map scale. Consider the following example:

<Rule>
<MaxScaleDenominator>20000</MaxScaleDenominator>
<PointSymbolizer>

<Graphic>
<Mark>
<Fill><CssParameter name="fill">#FF0000</CssParameter>

</Mark>
</Graphic>

</PointSymbolizer>
</Rule>
<Rule>

<MinScaleDenominator>20000</MinScaleDenominator>
<PointSymbolizer>

<Graphic>
<Mark>
<Fill><CssParameter name="fill">#0000FF</CssParameter>

</Mark>
</Graphic>

</PointSymbolizer>
</Rule>

The above rules specify that at a scale below 1:20000 features are symbolized with red points, and at a
scale above 1:20000 features are symbolized with blue points.

8.3.8 Scale

8.4 SLD Extensions in GeoServer

GeoServer sports a number of vendor specific extensions to SLD 1.0. While not portable they allow to make
map making more flexible and to generate better looking maps.

328 Chapter 8. Styling

GeoServer User Manual, Release 2.1-RC4

8.4.1 Geometry transformations in SLD

Each symbolizer in SLD 1.0 contains a <Geometry> element allowing the user to specify which geometry is
to be used for rendering. In the most common case it is not specified, but it becomes useful in the case a
feature has multiple geometries inside.

SLD 1.0 forces the <Geometry> content to be a <ogc:PropertyName>, GeoServer relaxes this constraint and
allows a generic sld:expression to be used instead. Common expressions cannot manipulate geometries, but
GeoServer provides a number of filter functions that can actually manipulate geometries by transforming
them into something different: this is what we call geometry transformations in SLD.

A full list of transformations is available in the Filter Function Reference.

Transformations are pretty flexible, the major limitation of them is that they happen in the geometry own
reference system and unit, before any reprojection and rescaling to screen happens.

Let’s look into some examples.

Extracting vertices

Here is an example that allows one to extract all the vertices of a geometry, and make them visible in a map,
using the vertices function:

1 <PointSymbolizer>
2 <Geometry>
3 <ogc:Function name="vertices">
4 <ogc:PropertyName>the_geom</ogc:PropertyName>
5 </ogc:Function>
6 </Geometry>
7 <Graphic>
8 <Mark>
9 <WellKnownName>square</WellKnownName>

10 <Fill>
11 <CssParameter name="fill">#FF0000</CssParameter>
12 </Fill>
13 </Mark>
14 <Size>6</Size>
15 </Graphic>
16 </PointSymbolizer>

View the full “Vertices” SLD

Applied to the sample tasmania_roads layer this will result in:

Start and end point

The startPoint and endPoint functions can be used to extract the start and end point of a line.

1 <PointSymbolizer>
2 <Geometry>
3 <ogc:Function name="startPoint">
4 <ogc:PropertyName>the_geom</ogc:PropertyName>
5 </ogc:Function>
6 </Geometry>
7 <Graphic>
8 <Mark>
9 <WellKnownName>square</WellKnownName>

8.4. SLD Extensions in GeoServer 329

GeoServer User Manual, Release 2.1-RC4

Figure 8.47: Extracting and showing the vertices out of a geometry

330 Chapter 8. Styling

GeoServer User Manual, Release 2.1-RC4

10 <Stroke>
11 <CssParameter name="stroke">0x00FF00</CssParameter>
12 <CssParameter name="stroke-width">1.5</CssParameter>
13 </Stroke>
14 </Mark>
15 <Size>8</Size>
16 </Graphic>
17 </PointSymbolizer>
18 <PointSymbolizer>
19 <Geometry>
20 <ogc:Function name="endPoint">
21 <ogc:PropertyName>the_geom</ogc:PropertyName>
22 </ogc:Function>
23 </Geometry>
24 <Graphic>
25 <Mark>
26 <WellKnownName>circle</WellKnownName>
27 <Fill>
28 <CssParameter name="fill">0xFF0000</CssParameter>
29 </Fill>
30 </Mark>
31 <Size>4</Size>
32 </Graphic>
33 </PointSymbolizer>

View the full “StartEnd” SLD

Applied to the sample tasmania_roads layer this will result in:

Drop shadow

The offset function can be used to create drop shadow effects below polygons. Notice the odd offset value,
set this way because the data used in the example is in geographic coordinates.

1 <PolygonSymbolizer>
2 <Geometry>
3 <ogc:Function name="offset">
4 <ogc:PropertyName>the_geom</ogc:PropertyName>
5 <ogc:Literal>0.00004</ogc:Literal>
6 <ogc:Literal>-0.00004</ogc:Literal>
7 </ogc:Function>
8 </Geometry>
9 <Fill>

10 <CssParameter name="fill">#555555</CssParameter>
11 </Fill>
12 </PolygonSymbolizer>

View the full “Shadow” SLD

Applied to the sample tasmania_roads layer this will result in:

Other possibilities

GeoServer set of transformations functions also contains a number of set related or constructive transfor-
mations, such as buffer, intersection, difference and so on. However, those functions are quite heavy in

8.4. SLD Extensions in GeoServer 331

GeoServer User Manual, Release 2.1-RC4

Figure 8.48: Extracting start and end point of a line

332 Chapter 8. Styling

GeoServer User Manual, Release 2.1-RC4

Figure 8.49: Dropping building shadows

8.4. SLD Extensions in GeoServer 333

GeoServer User Manual, Release 2.1-RC4

terms of CPU consumption so it is advise to use them with care, activating them only at the higher zoom
levels.

Buffering can often be approximated by adopting very large strokes and round line joins and line caps,
without actually have to perform the geometry transformation.

Adding new transformations

Filter functions are pluggable, meaning it’s possible to build new ones in Java and then drop the resulting
.jar file in GeoServer as a plugin. A guide is not available at this time, but have a look into the GeoTools
main module for examples.

8.4.2 Parameter substitution in SLD

Parameter substitution in SLD is a GeoServer specific functionality (starting from version 2.0.2) allowing
to pass down parameter values from the WMS request into an SLD style, allowing to dynamically change
colors, fonts, sizes and filter thresholds dynamically.

The parameters are specified on GetMap requests using the env parameter:

...&env=paramName:value;otherParam=otherValue&...

and can be accessed from the SLD using the env function. In the simplest form the env function will
retrieve the value of a specific parameter:

<ogc:Function name="env">
<ogc:Literal>size</ogc:Literal>

</ogc:Function>

Alternatively a default value can be provided, to be used if the parameter value was not provided along
with the GetMap request:

<ogc:Function name="env">
<ogc:Literal>size</ogc:Literal>
<ogc:Literal>6</ogc:Literal>

</ogc:Function>

The function can be called in any place where an OGC expression is used, so for example CSSParameter,
sizes and offsets, and filter themselves. The SLD parser accepts it even in some places where an expression
is not formally accepted, as the mark well known names.

A working example

The following symbolizer has been parametrized in three places, every time with fall backs (full SLD is also
available):

<PointSymbolizer>
<Graphic>
<Mark>

<WellKnownName><ogc:Function name="env">
<ogc:Literal>name</ogc:Literal>
<ogc:Literal>square</ogc:Literal>

</ogc:Function>
</WellKnownName>

334 Chapter 8. Styling

GeoServer User Manual, Release 2.1-RC4

<Fill>
<CssParameter name="fill">
#<ogc:Function name="env">

<ogc:Literal>color</ogc:Literal>
<ogc:Literal>FF0000</ogc:Literal>

</ogc:Function>
</CssParameter>

</Fill>
</Mark>
<Size>

<ogc:Function name="env">
<ogc:Literal>size</ogc:Literal>
<ogc:Literal>6</ogc:Literal>

</ogc:Function>
</Size>

</Graphic>
</PointSymbolizer>

Download the full SLD style

The SLD renders the sample sf:bugsites as follows when no parameter is provided in the request:

Figure 8.50: Default rendering

If the request is changed to include the following parameter:

env=color:00FF00;name:triangle;size:12

the result will be instead:

8.4.3 Specifying symbolizers sizes in ground units

The SLD 1.0 specification allows the specification of sizes in just one unit: pixels.

8.4. SLD Extensions in GeoServer 335

GeoServer User Manual, Release 2.1-RC4

Figure 8.51: Rendering with parameters

The Symbology Encoding 1.1 specification instead allows to use also meters and feet, as ground units, so
that the size of the symbolizers changes on the screen as one zooms in and out.

GeoServer supports the uom attribute just as specified in SE 1.1 in its extended SLD 1.0 support:

<?xml version="1.0" encoding="ISO-8859-1"?>
<StyledLayerDescriptor version="1.0.0" xmlns="http://www.opengis.net/sld" xmlns:ogc="http://www.opengis.net/ogc"
xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<NamedLayer>
<Name>5m blue line</Name>
<UserStyle>

<Title>tm blue line</Title>
<Abstract>Default line style, 5m wide blue</Abstract>

<FeatureTypeStyle>
<Rule>
<Title>Blue Line, 5m large</Title>
<LineSymbolizer uom="http://www.opengeospatial.org/se/units/metre">
<Stroke>
<CssParameter name="stroke">#0000FF</CssParameter>
<CssParameter name="stroke-width">5</CssParameter>

</Stroke>
</LineSymbolizer>

</Rule>

</FeatureTypeStyle>
</UserStyle>

</NamedLayer>
</StyledLayerDescriptor>

Applying the style to tiger:tiger_roads and zooming in we get:

The unit of measure supported are the same specified in the SE 1.1 specification:

336 Chapter 8. Styling

GeoServer User Manual, Release 2.1-RC4

8.4. SLD Extensions in GeoServer 337

GeoServer User Manual, Release 2.1-RC4

http://www.opengeospatial.org/se/units/metre
http://www.opengeospatial.org/se/units/foot
http://www.opengeospatial.org/se/units/pixel

This extended feature is officially supported starting with GeoServer 2.1.0, but it’s already available in
GeoServer 2.0.3 if the administrator starts the java virtual with the -DenableDpiUomRescaling=true
system variable specification.

8.5 SLD Tips and Tricks

This section details various advanced strategies for working with SLD.

8.5.1 Dealing with mixed geometry types

On occasion one might have the need to render data with a single geometry column whose content type
can be different for each feature (some have a polygon, some have a point, etc).

SLD 1.0 does not provide a clean solution for dealing with such a case. This is due to a mix of two issues.
The first one is that point, line, and polygon symbolizers can apply to other geometry types:

• Point symbolizers can apply to any kind of geometry; if the geometry is not a point, the centroid of
the feature will be used in its place.

• Line symbolizers can apply to both lines and polygons.

338 Chapter 8. Styling

GeoServer User Manual, Release 2.1-RC4

• Polygon symbolizers can apply to lines as well, by adding a segment connecting the last point of the
line to the first.

The second issue is that there is no standard way to apply a filter identifying the type of the chosen geometry
attribute.

There are a number of workarounds, either requiring data restructuring or the use of non-standard filter
functions.

Restructuring the data

There are a few ways to restructure the data so that it can be rendered without difficulties using only
standard SLD constructs.

Split the table

The first and obvious one is to split the table into a set of separate ones, each one containing a single
geometry type. For example, if table findings has a geometry column that can contain point, lines, and
polygons, three tables will be generated, each one containing a single geometry type.

Separate geometry columns

A second way is to use one table and separate geometry columns. So, if the table findings has a geom
column, the restructured table will have point, line and polygon columns, each of them containing just
one geometry type. After the restructuring, the symbolizers will refer to a specific geometry, for example:

<PolygonSymbolizer>
<Geometry><ogc:PropertyName>polygon</ogc:PropertyName></Geometry>

</PolygonSymbolizer>

This way each symbolizer will match only the geometry types it is supposed to render, and skip over the
rows that contain a null value.

Add a geometry type column

A third way is to add a geometry type column allowing standard filtering constructs to be used, and then
build a separate rule per geometry type. In the example above a new attribute, gtype will be added
containing the values Point, Line and Polygon. The following SLD template can be used after the
change:

<Rule>
<ogc:Filter>

<ogc:PropertyIsEqualsTo>
<ogc:PropertyName>gtype</ogc:PropertyName>
<ogc:Literal>Point</ogc:PropertyName>

</ogc:PropertyIsEqualsTo>
</ogc:Filter>
<PointSymbolizer>

...
</PointSymbolizer>

</Rule>
<Rule>

8.5. SLD Tips and Tricks 339

GeoServer User Manual, Release 2.1-RC4

<ogc:Filter>
<ogc:PropertyIsEqualsTo>

<ogc:PropertyName>gtype</ogc:PropertyName>
<ogc:Literal>Line</ogc:PropertyName>

</ogc:PropertyIsEqualsTo>
</ogc:Filter>
<LineSymbolizer>

...
</LineSymbolizer>

</Rule>
<Rule>

<ogc:Filter>
<ogc:PropertyIsEqualsTo>

<ogc:PropertyName>gtype</ogc:PropertyName>
<ogc:Literal>Polygon</ogc:PropertyName>

</ogc:PropertyIsEqualsTo>
</ogc:Filter>
<PolygonSymbolizer>

...
</PolygonSymbolizer>

</Rule>

All of the above suggestions do work under the assumption that restructuring the data is technically possi-
ble, which is usually true in spatial databases that provide functions that allow to recognize the geometry
type.

Create views

A less invasive way to get the same results without changing the structure of the table is to create views
that have the required structure. This allows the original data to be kept intact, and the views to be used
only for rendering sake.

Using non-standard SLD functions

SLD 1.0 uses the OGC Filter 1.0 specification for filtering out the data to be renderered by each rule. A
function is a black box taking a number of parameters as inputs, and returning a result. It can implement
many functionalities, such as computing a trigonometric function, formatting dates, or determining the
type of a geometry.

However, none of the standards define a set of well known functions. This means that any SLD document
that uses functions is valid, although it is not portable to another GIS system. If this is not a problem,
filtering by geometry type can be done using the geometryType filter function, which takes a geome-
try property and returns a string, which can (currently) be one of Point, LineString, LinearRing,
Polygon, MultiPoint, MultiLineString, MultiPolygon and GeometryCollection.

Using the function, a Rule matching only single points can be written as:

<Rule>
<ogc:PropertyIsEqualsTo>

<ogc:Function name="geometryType">
<ogc:PropertyName>geom</ogc:PropertyName>

</ogc:Function>
<ogc:Literal>Point</ogc:Literal>

</ogc:PropertyIsEqualsTo>
<PointSymbolizer>

340 Chapter 8. Styling

GeoServer User Manual, Release 2.1-RC4

...
</PointSymbolizer>

</Rule>

The filter becomes more complex if one has to match any kind of linear geometry. In this case, it would look
like:

<Rule>
<ogc:Filter>

<ogc:PropertyIsEqualsTo>
<ogc:Function name="in3">

<ogc:Function name="geometryType">
<ogc:PropertyName>geom</ogc:PropertyName>

</ogc:Function>
<ogc:Literal>LineString</ogc:Literal>
<ogc:Literal>LinearRing</ogc:Literal>
<ogc:Literal>MultiLineString</ogc:Literal>

</ogc:Function>
<ogc:Literal>true</ogc:Literal>

</ogc:PropertyIsEqualsTo>
</ogc:Filter>
<LineSymbolizer>

...
</LineSymbolizer>

</Rule>

This filter would read like geometryType(geom) in (LineString, LinearRing,
MultiLineString). Filter functions in Filter 1.0 have a known number of arguments, so there are
various in functions with different names, like in2, in3, ..., in10.

8.5. SLD Tips and Tricks 341

GeoServer User Manual, Release 2.1-RC4

342 Chapter 8. Styling

CHAPTER 9

Services

GeoServer serves data using standard protocols established by the Open Geospatial Consortium. The Web
Feature Service (WFS) allows for requests of geographical feature data (vectors). The Web Map Service
(WMS) allows for requests of images generated from geographical data. Finally, the Web Coverage Service
(WCS) allows for requests of coverage data (rasters). These services are the heart of GeoServer.

9.1 Web Feature Service

9.1.1 WFS basics

GeoServer provides support for Open Geospatial Consortium (OGC) Web Feature Service (WFS) versions
1.0 and 1.1. This is a standard for getting raw vector data - the ‘source code’ of the map - over the web. Using
a compliant WFS makes it possible for clients to query the data structure and the actual data. Advanced
WFS operations also enable editing and locking of the data.

GeoServer is the reference implementation of both the 1.0 and 1.1 versions of the standard, completely im-
plementing every part of the protocol. This includes the Basic operations of GetCapabilities, DescribeFea-
tureType and GetFeature, as well as the more advanced Transaction, LockFeature and GetGmlObject op-
erations. GeoServer’s WFS also is integrated with GeoServer’s Security system, to limit access to data and
transactions. It also supports a wide variety of WFS output formats, to make the raw data more widely
available.

GeoServer additionally supports a special ‘versioning’ protocol in an extension: WFS Versioning. This is not
yet a part of the WFS specification, but is written to be compatible, extending it to provide a history of edits,
differences between edits, and a rollback operation to take things to a previous state.

WFS reference

Differences between WFS versions

The major differences between the WFS versions are:

• WFS 1.1.0 returns GML3 as the default GML. In WFS 1.0.0 the default was GML2. (GeoServer still
supports requests in both GML3 and GML2 formats.) GML3 has slightly different ways of specifying
a geometry.

343

http://www.opengeospatial.org

GeoServer User Manual, Release 2.1-RC4

• In WFS 1.1.0, the way to specify the SRS (Spatial Reference System, aka projection)
is urn:x-ogc:def:crs:EPSG:XXXX, whereas in version 1.0.0 the specification was
http://www.opengis.net/gml/srs/epsg.xml#XXXX. This change has implications on
the axis order of the returned data.

• WFS 1.1.0 supports on-the-fly reprojection of data, which allows for data to be returned in a SRS other
than the native.

Axis ordering

WFS 1.0.0 servers return geographic coordinates in longitude/latitude (x/y) order. This is the most com-
mon way to distribute data as well (for example, most shapefiles adopt this order by default).

However, the traditional axis order for geographic and cartographic systems is latitude/longitude (y/x),
the opposite and WFS 1.1.0 specification respects this. This can cause difficulties when switching between
servers with different WFS versions, or when upgading your WFS.

To sum up, the defaults are as follows:

• WFS 1.1.0 request = latitude/longitude

• WMS 1.0.0 request = longitude/latitude

GeoServer, however, in an attempt to minimize confusion and increase interoperability, has adopted the
following conventions when specifying projections in the follow formats:

• EPSG:xxxx - longitude/latitude

• http://www.opengis.net/gml/srs/epsg.xml#xxxx - longitude/latitude

• urn:x-ogc:def:crs:EPSG:xxxx - latitude/longitude

9.1.2 WFS output formats

WFS returns features and feature information in a number of possible formats. This page shows a list of the
output formats. In all cases the syntax for setting an output format is:

outputFormat=<outputformat>

where <outputformat> is any of the options below.

Note: Some additional output formats are available with the use of an extension, such as Excel. This list
applies just to the basic GeoServer installation. The full list of output formats supported by your GeoServer
instance can be found by requesting your WFS GetCapabilities.

Format Syntax Notes
GML2 outputFormat=GML2 Default option using WFS 1.0.0
GML3 outputFormat=GML3 Default option using WFS 1.1.0
Shapefile outputFormat=shape-zip Created in a ZIP archive
JSON outputFormat=json
CSV outputFormat=csv

Zipped shapefile customisation

Starting with GeoServer version 2.0.3 the zipped shapefile output format output can be customized by
preparing a Freemarker template which will drive the file names of the zip file and the shapefiles in it. The
default template looks like the following:

344 Chapter 9. Services

GeoServer User Manual, Release 2.1-RC4

zip=${typename}
shp=${typename}${geometryType}
txt=wfsrequest

Structurally this is a property file, the zip property is the name of the zip file, the shp property the name
of the shapefile for a given feature type and txt is the dump of the WFS request (the request dump is also
available starting with version 2.0.3).

The properties available in the template are:

• typename: the feature type name (for the zip property it will be the first feature type in case of a
request containing many)

• geometryType: the type of geometry contained in the shapefile (it used only if the output geometry
type is generic and the variuos geometries are fanned out in one shapefile per type)

• workspace: the workspace of the feature type

• timestamp: a Date object with the request timestamp

• iso_timestamp: a string, the ISO timestamp of the request at GMT, in the yyyyMMdd_HHmmss
format

9.1.3 WFS vendor parameters

WFS Vendor parameters are options that are not defined in the official WFS specification, but are allowed
by it. GeoServer supports a range of custom WFS parameters.

CQL filters

When specifying a WFS GetFeature GET request, a filter can be specified in CQL (Common Query Lan-
guage), as opposed to encoding the XML into the request. CQL sports a much more compact and human
readable syntax compared to OGC filters. CQL isn’t as flexible as OGC filters, however, and can’t encode
as many types of filters as the OGC specification does. In particular, filters by feature ID are not supported.

Example

A sample filter request using an OGC filter taken from a GET request:

filter=%3CFilter%20xmlns:gml=%22http://www.opengis.net/gml%22%3E%3CIntersects%3E%3CPropertyName%3Ethe_geom%3C/PropertyName%3E%3Cgml:Point%20srsName=%224326%22%3E%3Cgml:coordinates%3E-74.817265,40.5296504%3C/gml:coordinates%3E%3C/gml:Point%3E%3C/Intersects%3E%3C/Filter%3E

The same filter using CQL:

cql_filter=INTERSECT(the_geom,%20POINT%20(-74.817265%2040.5296504))

Reprojection

WFS 1.1 allows the ability to reproject data (to have GeoServer store the data in one projection and return
GML in another).

GeoServer supports this using WFS 1.0 as well. When doing a WFS 1.0 GetFeature GET request you can add
this parameter to specify the reprojection SRS:

9.1. Web Feature Service 345

GeoServer User Manual, Release 2.1-RC4

srsName=<srsName>

where <srsName> is the code for the projection (such as EPSG:4326).

For POST requests, you can add the same code to the Query element.

XML request validation

By default, GeoServer is slightly more forgiving than the WFS specification requires. To force incoming
XML requests to be strictly valid, use the following parameter:

strict=[true|false]

where false is the default option.

Example

Consider the following POST request:

<wfs:GetFeature service="WFS" version="1.0.0" xmlns:wfs="http://www.opengis.net/wfs">
<Query typeName="topp:states"/>

</wfs:GetFeature>

This request will be processed successfully in GeoServer, but technically this request is invalid:

• The Query element should be prefixed with wfs:

• The namespace prefix has not been mapped to a namespace URI

Executing the above command with strict=true results in an error. For the request to be processed, it
must be altered:

<wfs:GetFeature service="WFS" version="1.0.0" xmlns:wfs="http://www.opengis.net/wfs" xmlns:topp="http://www.openplans.org/topp">
<wfs:Query typeName="topp:states"/>

</wfs:GetFeature>

GetCapabilities namespace filter

WFS GetCapabilities requests can be filtered to only return layers corresponding to a particular namespace.
To do this, add the following code to your request:

namespace=<namespace>

where <namespace> is the namespace prefix you wish to filter on.

Using an invalid namespace prefix will not cause any errors, but the document returned will contain no
information on any layers.

Note: This only affects the capabilities document, and not any other requests. WFS requests given to other
layers, even when a different namespace is specified, will still be processed.

Warning: Using this parameter may cause your capabilities document to become invalid (as the WFS
specification requires the document to return at least one layer).

346 Chapter 9. Services

GeoServer User Manual, Release 2.1-RC4

9.1.4 WFS reference

Introduction

The Web Feature Service (WFS) is a standard created by the OGC that refers to the sending and receiving of
geospatial data through HTTP. WFS encodes and transfers information in Geography Markup Language, a
subset of XML. The current version of WFS is 1.1.0. GeoServer supports both version 1.1.0 (the default since
GeoServer 1.6.0) and version 1.0.0. There are differences between these two formats, some more subtle than
others, and this will be noted where differences arise. The current version of WFS is 1.1. WFS version 1.0
is still used in places, and we will note where there are differences. However, the syntax will often remain
the same.

An important distinction must be made between WFS and Web Map Service, which refers to the sending and
receiving of geographic information after it has been rendered as a digital image.

Benefits of WFS

One can think of WFS as the “source code” to the maps that one would ordinarily view (via WMS). WFS
leads to greater transparency and openness in mapping applications. Instead of merely being able to look at
a picture of the map, as the provider wants the user to see, the power is in the hands of the user to determine
how to visualize (style) the raw geographic and attribute data. The data can also be downloaded, further
analyzed, and combined with other data. The transactional capabilities of WFS allow for collaborative
mapping applications. In short, WFS is what enables open spatial data.

Operations

WFS can perform the following operations:

Operation Description
GetCapabilities Retrieves a list of the server’s data, as well as valid WFS operations and

parameters
DescribeFeatureTypeRetrieves information and attributes about a particular dataset
GetFeature Retrieves the actual data, including geometry and attribute values
LockFeature Prevents a feature type from being edited
Transaction Edits existing featuretypes by creating, updating, and deleting.
GetGMLObject (Version 1.1.0 only) - Retrieves element instances by traversing XLinks that refer

to their XML IDs.

A WFS server that supports transactions is sometimes known as a WFS-T. GeoServer fully supports trans-
actions.

GetCapabilities

The GetCapabilities operation is a request to a WFS server for a list of what operations and services (“ca-
pabilities”) are being offered by that server.

A typical GetCapabilities request would look like this (at URL http://www.example.com/wfs):

Using a GET request (standard HTTP):

http://www.example.com/wfs?
service=wfs&
version=1.1.0&
request=GetCapabilities

9.1. Web Feature Service 347

http://www.opengeospatial.org/standards/wfs

GeoServer User Manual, Release 2.1-RC4

The equivalent using POST:

<GetCapabilities
service="WFS"
xmlns="http://www.opengis.net/wfs"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.opengis.net/wfs
http://schemas.opengis.net/wfs/1.1.0/wfs.xsd"/>

GET requests are simplest to decode, so we will discuss them in detail, but the POST requests are anal-
ogous. (The actual requests would be all on one line, with no line breaks, but our convention here is to
break lines for clarity.) Here there are three parameters being passed to our WFS server, service=wfs,
version=1.1.0, and request=GetCapabilities. At a bare minimum, it is required that a WFS re-
quest have these three parameters (service, version, and request). GeoServer relaxes these requirements
(setting the default version if omitted), but “officially” they are mandatory, so they should always be in-
cluded. The service key tells the WFS server that a WFS request is forthcoming. The version key refers to
which version of WFS is being requested. Note that there are only two version numbers officially sup-
ported: “1.0.0” and “1.1.0”. Supplying a value like “1” or “1.1” will likely return an error. The request key is
where the actual GetCapabilities operation is specified.

The Capabilities document that is returned is a long and complex chunk of XML, but very important, and so
it is worth taking a closer look. (The 1.0.0 Capabilities document is very different from the 1.1.0 document
discussed here, so beware.) There are five main components we will be discussing (other components are
beyond the scope of this document.):

ServiceI-
dentifica-
tion

This section contains basic “header” information such as the Name and ServiceType.
The ServiceType mentions which version(s) of WFS are supported.

Service-
Provider

This section provides contact information about the company behind the WFS server,
including telephone, website, and email.

Operations-
Metadata

This section describes the operations that the WFS server recognizes and the parameters
for each operation. A WFS server can be set up not to respond to all aforementioned
operations.

Feature-
TypeList

This section lists the available featuretypes. They are listed in the form
“namespace:featuretype”. Also, the default projection of the featuretype is listed here,
along with the resultant bounding box for the data in that projection.

Fil-
ter_Capabilities

This section lists filters available in which to request the data. SpatialOperators (Equals,
Touches), ComparisonOperators (LessThan, GreaterThan), and other functions are all
listed here. These filters are not defined in the Capabilities document, but most of them
(like the ones mentioned here) are self-evident.

DescribeFeatureType

The purpose of the DescribeFeatureType is to request information about an individual featuretype before
requesting the actual data. Specifically, DescribeFeatureType will request a list of features and attributes
for the given featuretype, or list the featuretypes available.

Let’s say we want a list of featuretypes. The appropriate GET request would be:

http://www.example.com/wfs?
service=wfs&
version=1.1.0&
request=DescribeFeatureType

348 Chapter 9. Services

GeoServer User Manual, Release 2.1-RC4

Note again the three required fields (service, version, and request). This will return the list of fea-
turetypes, sorted by namespace.

If we wanted information about a specific featuretype, the GET request would be:

http://www.example.com/wfs?
service=wfs&
version=1.1.0&
request=DescribeFeatureType&
typeName=namespace:featuretype

The only difference between the two requests is the addition of typeName=namespace:featuretype,
where featuretype is the name of the featuretype and namespace is the name of the namespace that
featuretype is contained in.

GetFeature

The GetFeature operation requests the actual spatial data. This is the “source code” spoken about previ-
ously. More so than the other operations, it is complex and powerful. Obviously, not all of its abilities will
be discussed here.

The simplest way to run a GetFeature command is without any arguments.

http://www.example.com/wfs?
service=wfs&
version=1.1.0&
request=GetFeature&
typeName=namespace:featuretype

This syntax should be familiar from previous examples. The only difference is the request=GetFeature.

It is not recommended to run this command in a web browser, as this will return the geometries for all
features in a featuretype. This can be a great deal of data. One way to limit the output is to specify a
feature. In this case, the GET request would be:

http://www.example.com/wfs?
service=wfs&
version=1.1.0&
request=GetFeature&
typeName=namespace:featuretype&
featureID=feature

Here there is the additional parameter of featureID=feature. Replace feature with the ID of the
feature you wish to retrieve.

If the name of the feature is unknown, or if you wish to limit the amount of features returned, there is the
maxFeatures parameter.

http://www.example.com/wfs?
service=wfs&
version=1.1.0&
request=GetFeature&
typeName=namespace:featuretype&
maxFeatures=N

9.1. Web Feature Service 349

GeoServer User Manual, Release 2.1-RC4

In the above example, N is the number of features to return.

A question that may arise at this point is how the WFS server knows which N Features to return. The bad
news is that it depends on the internal structure of the data, which may not be arranged in a very helpful
way. The good news is that it is possible to sort the features based on an attribute, via the following syntax.
(This is new as of 1.1.0.)

http://www.example.com/wfs?
service=wfs&
version=1.1.0&
request=GetFeature&
typeName=namespace:featuretype&
maxFeatures=N&
sortBy=property

In the above example, sortBy=property determines the sort. Replace property with the attribute you
wish to sort by. The default is to sort ascending. Some WFS servers require sort order to be specified, even
if ascending. If so, append a +A to the request. To sort descending, add a +D to the request, like so:

http://www.example.com/wfs?
service=wfs&
version=1.1.0&
request=GetFeature&
typeName=namespace:featuretype&
maxFeatures=N&
sortBy=property+D

It is not necessary to to use sortBy with maxFeatures, but they can often complement each other.

To narrow the search not by feature, but instead by an attribute, use the propertyName key in the form
propertyName=property. You can specify a single property, or multiple properties separated by com-
mas. For a single property from all features, use the following:

http://www.example.com/wfs?
service=wfs&
version=1.1.0&
request=GetFeature&
typeName=namespace:featuretype&
propertyName=property

For a single property from just one feature:

http://www.example.com/wfs?
service=wfs&
version=1.1.0&
request=GetFeature&
typeName=namespace:featuretype&
featureID=feature&
propertyName=property

Or more than one property from a feature:

http://www.example.com/wfs?
service=wfs&
version=1.1.0&
request=GetFeature&
typeName=namespace:featuretype&

350 Chapter 9. Services

GeoServer User Manual, Release 2.1-RC4

featureID=feature&
propertyName=property1,property2

All of these permutations so far have centered around parameters of a non-spatial nature, but it is also pos-
sible to query for features based on geometry. While there are very limited tools available in a GET request
for spatial queries (much more are available in POST requests using filters) one of the most important can
be used. This is known as the “bounding box” or BBOX. The BBOX allows us to ask for only such features
that are contained (or partially contained) inside a box of the coordinates we specify. The form of the bbox
query is bbox=a1,b1,a2,b2‘‘where ‘‘a, b, c, and d refer to coordinates.

Notice that the syntax wasn’t bbox=x1,y1,x2,y2 or bbox=y1,x1,y2,x1. The reason the coordinate-
free a,b syntax was used above is because the order depends on the coordinate system used. To specify
the coordinate system, append srsName=CRS to the WFS request, where CRS is the coordinate reference
system. As for which corners of the bounding box to specify (bottom left / top right or bottom right / top
left), that appears to not matter, as long as the bottom is first. So the full request for returning features based
on bounding box would look like this:

http://www.example.com/wfs?
service=wfs&
version=1.1.0&
request=GetFeature&
typeName=namespace:featuretype&
bbox=a1,b1,a2,b2

Transaction

The Transaction operation performs edits of actual data that is exposed by the WFS. A transaction can add,
modify and remove features. Each transaction consists of zero or more Insert, Update and Delete elements.
Each element is performed in order. In GeoServer every transaction is ‘atomic’, meaning that if any of the
elements fails then the data is left unchanged.

More information on the syntax of transactions can be found in the WFS specification, and in the GeoServer
sample requests.

LockFeature

The LockFeature operation is theoretically useful in conjunction with transactions, so users can ‘lock’ an
area of the map that they are editing, to ensure that other users don’t edit it. In practice no widely used
clients support the LockFeature operation.

GetGMLObject

GetGMLObject is another operation that is little used in practical client applications. It only really makes
sense in situations that require Complex Features. It allows clients to extract just a portion of the nested
properties.

9.1.5 WFS Schema Mapping

One of the functions of the GeoServer WFS is to automatically map the internal schema of a dataset to a
feature type schema. The automatic mapping is performed with the following rules:

1. The name of the feature element maps to the name of the dataset

9.1. Web Feature Service 351

GeoServer User Manual, Release 2.1-RC4

2. The name of the feature type maps to the name of the dataset with the string “Type” appended to it

3. The name of each attribute of the dataset maps to the name of an element particle contained in the
feature type

4. The type of each attribute of the dataset maps to the appropriate xml schema type (ex: xs:int,
xs:double, etc...)

As an example, consider a dataset with the following schema:

myDataset(intProperty:Integer, stringProperty:String, floatProperty:Float, geometry:Point)

The above dataset would be mapped to the following XML schema, available from a
DescribeFeatureType request for the topp:myDataset type:

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:gml="http://www.opengis.net/gml"
xmlns:topp="http://www.openplans.org/topp"
targetNamespace="http://www.openplans.org/topp"
elementFormDefault="qualified">

<xsd:import namespace="http://www.opengis.net/gml" schemaLocation="http://localhost:8080/geoserver/schemas/gml/3.1.1/base/gml.xsd"/>

<xsd:complexType name="myDatasetType">
<xsd:complexContent>

<xsd:extension base="gml:AbstractFeatureType">
<xsd:sequence>
<xsd:element maxOccurs="1" minOccurs="0" name="intProperty" nillable="true" type="xsd:int"/>
<xsd:element maxOccurs="1" minOccurs="0" name="stringProperty" nillable="true" type="xsd:string"/>
<xsd:element maxOccurs="1" minOccurs="0" name="floatProperty" nillable="true" type="xsd:double"/>
<xsd:element maxOccurs="1" minOccurs="0" name="geometry" nillable="true" type="gml:PointPropertyType"/>

</xsd:sequence>
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>

<xsd:element name="myDataset" substitutionGroup="gml:_Feature" type="topp:myDatasetType"/>

</xsd:schema>

Schema customization

The GeoServer WFS supports a limited amount of customization with regard to schema output. A custom
schema can be used to:

• Limit the attributes which are exposed in the feature type schema

• Changing the types of attributes in the schema

• Change the structure of the schema, for example changing the base feature type

A mapped schema is customized by creating a file called schema.xsd in the appropriate feature type
directory of the GeoServer data directory. As an simple example consider the use case of limiting the
exposed attributes in the above dataset.

It is useful to start with the default output as a base as it is a complete schema. With the feature type schema
shown above, a GetFeature request would result in features that look like the following:

352 Chapter 9. Services

GeoServer User Manual, Release 2.1-RC4

<topp:myDataset gml:id="myDataset.1">
<topp:intProperty>1</topp:intProperty>
<topp:stringProperty>one</topp:stringProperty>
<topp:floatProperty>1.1</topp:floatProperty>
<topp:geometry>

<gml:Point srsName="urn:x-ogc:def:crs:EPSG:4326">
<gml:pos>1.0 1.0</gml:pos>

</gml:Point>
</topp:geometry>

</topp:myDataset>

Now consider the case of removing the floatProperty from attribute. To achieve this:

1. The original schema is modified and the floatProperty is removed, resulting in the following type
definition:

<xsd:complexType name="myDatasetType">
<xsd:complexContent>

<xsd:extension base="gml:AbstractFeatureType">
<xsd:sequence>
<xsd:element maxOccurs="1" minOccurs="0" name="intProperty" nillable="true" type="xsd:int"/>
<xsd:element maxOccurs="1" minOccurs="0" name="stringProperty" nillable="true" type="xsd:string"/>
<!-- remove the floatProperty element
<xsd:element maxOccurs="1" minOccurs="0" name="floatProperty" nillable="true" type="xsd:double"/>
-->
<xsd:element maxOccurs="1" minOccurs="0" name="geometry" nillable="true" type="gml:PointPropertyType"/>

</xsd:sequence>
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>

2. The result is saved in a file named schema.xsd.

3. The schema.xsd file is copied into the feature type directory for the topp:myDataset:

copy schema.xsd $GEOSERVER_DATA_DIR/workspaces/<workspace>/<datastore>/myDataset/

Where <workspace> is the name of the workspace containing your datastore and <datastore> is
the name of the data store which contains myDataset

In order for the new schema to to be picked up by GeoServer the configuration must be reloaded. This cab
be done by logging into the admin interface and clicking the Load button the Config page. Or alternatively
by restarting the entire Server.

Another DescribeFeatureType request for the topp:myDataset type now results in the
floatProperty element being absent:

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:gml="http://www.opengis.net/gml"
xmlns:topp="http://www.openplans.org/topp"
targetNamespace="http://www.openplans.org/topp"
elementFormDefault="qualified">

<xsd:import namespace="http://www.opengis.net/gml" schemaLocation="http://localhost:8080/geoserver/schemas/gml/3.1.1/base/gml.xsd"/>

<xsd:complexType name="myDatasetType">
<xsd:complexContent>
<xsd:extension base="gml:AbstractFeatureType">

9.1. Web Feature Service 353

GeoServer User Manual, Release 2.1-RC4

<xsd:sequence>
<xsd:element maxOccurs="1" minOccurs="0" name="intProperty" nillable="true" type="xsd:int"/>
<xsd:element maxOccurs="1" minOccurs="0" name="stringProperty" nillable="true" type="xsd:string"/>
<xsd:element maxOccurs="1" minOccurs="0" name="geometry" nillable="true" type="gml:PointPropertyType"/>

</xsd:sequence>
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>

<xsd:element name="myDataset" substitutionGroup="gml:_Feature" type="topp:myDatasetType"/>

</xsd:schema>

Another GetFeature request now results in features in which the floatProperty is absent:

<topp:myDataset gml:id="myDataset.1">
<topp:intProperty>1</topp:intProperty>
<topp:stringProperty>one</topp:stringProperty>
<topp:geometry>

<gml:Point srsName="urn:x-ogc:def:crs:EPSG:4326">
<gml:pos>1.0 1.0</gml:pos>

</gml:Point>
</topp:geometry>

</topp:myDataset>

Type changing

Schema customization can be used to do a limited amount of type changing. Limited by the fact that a
changed type must be in the same “domain” as the original type. For example integers types must be
changed to integer types, temporal types to temporal types, etc...

The most common case is for geometry attributes. Often it is the case that the underlying dataset does
not have the metadata necessary to report the specific type (Point,LineString,Polygon, etc...) of a geom-
etry attribute. In these cases the automatic schema mapping would result in an element particle like the
following:

<xsd:element maxOccurs="1" minOccurs="0" name="geometry" nillable="true " type="gml:GeometryPropertyType"/>

However it is often the case that the user knows the specific type of the geometry, for example Point. The
above element could be changed to:

<xsd:element maxOccurs="1" minOccurs="0" name="geometry" nillable="true " type="gml:PointPropertyType"/>

9.2 Web Map Service

9.2.1 WMS basics

GeoServer provides support for Open Geospatial Consortium (OGC) Web Map Service (WMS) versions
1.1.1 and 1.3.0. This is a standard for generating maps on the web - it is how all the visual mapping that
GeoServer does is produced. Using a compliant WMS makes it possible for clients to overlay maps from
several different sources in a seamless way.

354 Chapter 9. Services

GeoServer User Manual, Release 2.1-RC4

GeoServer’s implementation fully supports most every part of the standard, and is certified compliant
against the OGC’s test suite. It includes a wide variety of rendering and labeling options, and is one of the
fastest WMS Servers for both raster and vector data.

The WMS implementation of GeoServer also supports reprojection in to any reference system in the EPSG
database, and it is also possible to add additional projections if the Well Known Text is known. It also fully
supports the Styled Layer Descriptor (SLD) standard, and indeed uses SLD files as its native rendering
rules. For more information on how to style GeoServer data in the WMS see the section Styling

Differences between WMS versions

The major differences between versions 1.1.1 and 1.3.0 are:

• In 1.1.1 geographic coordinate systems specified with the EPSG namespace are defined to have an axis
ordering of longitude/latitude. In 1.3.0 the ordering is latitude/longitude. See Axis Ordering below
for more details.

• In the GetMap operation the srs parameter from 1.1.1 is now crs in 1.3.0. Although GeoServer
supports both regardless of version.

• In the GetFeatureInfo operation the x, y parameters from 1.1.1 are now i, j in 1.3.0. Although
GeoServer will support x, y in 1.3.0 when running on non cite compliance mode.

Axis Ordering

The WMS 1.3 specification has mandated that the axis ordering for geographic coordinate systems defined
in the EPSG database be latitude/longitude, or y/x. This is contrary to the fact that most spatial data is
usually in longitude/latitude, or x/y. For example, consider the WMS 1.1 request:

geoserver/wms?VERSION=1.1.1&REQUEST=GetMap&SRS=epsg:4326&BBOX=-180,-90.180,90&...

The equivalent WMS 1.3 request would be:

geoserver/wms?VERSION=1.1.1&REQUEST=GetMap&CRS=epsg:4326&BBOX=-90,-180,90,180&...

The coordinates specified by the BBOX parameter are essentially flipped.

9.2.2 WMS output formats

WMS returns images in a number of possible formats. This page shows a list of the output formats. In all
cases the syntax for setting an output format is:

format=<format>

where <format> is any of the options below.

Note: The list of output formats supported by your GeoServer instance can be found by a WMS GetCapa-
bilities request.

9.2. Web Map Service 355

GeoServer User Manual, Release 2.1-RC4

For-
mat

Syntax Notes

PNG format=image/png Default
PNG8 format=image/png8Same as PNG, but computes an optimal 256 color (8 bit) palette, so the

image size is usually smaller
JPEG format=image/jpeg
GIF format=image/gif
TIFF format=image/tiff
TIFF8 format=image/tiff8Same as TIFF, but computes an optimal 256 color (8 bit) palette, so the

image size is usually smaller
Geo-
TIFF

format=image/geotiffSame as TIFF, but includes extra GeoTIFF metadata

Geo-
TIFF8

format=image/geotiff8Same as TIFF, but includes extra GeoTIFF metadata and computes an
optimal 256 color (8 bit) palette, so the image size is usually smaller

SVG format=image/svg
PDF format=application/pdf
GeoRSS format=rss
KML format=kml
KMZ format=kmz
Open-
Lay-
ers

format=application/openlayersGenerates an OpenLayers HTML application.

9.2.3 WMS configuration

Layer Groups

A Layer Group is a group of layers that can be referred to by one layer name. For example, if you put
three layers (call them layer_A, layer_B, and layer_C) under the one “Layer Group” layer, then when a user
makes a WMS getMap request for that group name, they will get a map of those three layers.

For information on configuring Layer Groups in the Web Administration Interface see Layer Groups

Request limits

The request limit options allow the administrator to limit the resources consumed by each WMS GetMap
request.

The following table shows each option name, a description, and the minimum GeoServer version at which
the option is available (old versions will just ignore it if set).

356 Chapter 9. Services

GeoServer User Manual, Release 2.1-RC4

Option Description Ver-
sion

maxRe-
quest-
Memory

Sets the maximum amount of memory, in kilobytes, a single GetMap request is
allowed to use. Each output format will make a best effort attempt to respect the
maximum using the highest consuming portion of the request processing as a
reference. For example, the PNG output format will take into consideration the
memory used to prepare the image rendering surface in memory, usually
proportional to the image size multiplied by the number of bytes per pixel

1.7.5

maxRen-
dering-
Time

Sets the maximum amount of time, in seconds, GeoServer will use to process the
request. This time limits the “blind processing” portion of the request serving,
that is, the part in which GeoServer is computing the results before writing them
out to the client. The portion that is writing results back to the client is not under
the control of this parameter, since this time is also controlled by how fast the
network between the server and the client is. So, for example, in the case of
PNG/JPEG image generation, this option will control the pure rendering time,
but not the time used to write the results back.

1.7.5

maxRen-
deringEr-
rors

Sets the maximum amount of rendering errors tolerated by a GetMap. Usually
GetMap skips over faulty features, reprojection errors and the like in an attempt
to serve the results anyways. This makes for a best effort rendering, but also
makes it harder to spot issues, and consumes CPU cycles as each error is handled
and logged

1.7.5

The default value of each limit is 0, in this case the limit won’t be applied.

Once any of the set limits is exceeded, the GetMap operation will stop and a ServiceException will be
returned to the client.

It is suggested that the administrator sets all of the above limits taking into consideration peak conditions.
For example, while a GetMap request under normal circumstance may take less than a second, under high
load it is acceptable for it to take longer, but usually, it’s not sane that a request goes on for 30 minutes
straight. The following table shows an example or reasonable values for the configuration options above:

Option ValueRationale
maxRe-
questMem-
ory

16384 16MB are sufficient to render a 2048x2048 image at 4 bytes per pixel (full color and
transparency), or a 8x8 meta-tile if you are using GeoWebCache or TileCache. Mind
the rendering process will use an extra in memory buffer for each subsequent
FeatureTypeStyle in your SLD, so this will also limit the size of the image. For
example, if the SLD contains two FeatureTypeStyle element in order to draw cased
lines for an highway the maximum image size will be limited to 1448x1448 (the
memory goes like the square of the image size, so halving the memory does not
halve the image size)

maxRen-
dering-
Time

120 A request that processes for two minutes straight is probably drawing a lot of
features independent of the current load. It might be the result of a client making a
GetMap against a big layer using a custom style that does not have the proper scale
dependencies

maxRen-
deringEr-
rors

100 Encountering 100 errors is probably the result of a request that is trying to reproject
a big data set into a projection that is not suited to area it covers, resulting in many
reprojection failures.

9.2.4 WMS vendor parameters

WFS vendor parameters are options that are not defined in the official WMS specification, but are allowed
by it. GeoServer supports a range of custom WMS parameters.

9.2. Web Map Service 357

GeoServer User Manual, Release 2.1-RC4

angle

Starting with GeoServer 2.0.2 angle=x rotates the map around its center by x degrees clockwise. The
rotation is supported in all raster formats, PDF and SVG based on the Batik producer (the default one).

buffer

The buffer parameter specifies the number of extra pixels that should be taken into account when render-
ing a map (using the GetMap operation). This is important for catching features that are outside the current
bounding box, but whose styling is thick enough to be visible inside the relevant area. GeoServer will try
to compute this buffer automatically by parsing the SLD, but that may fail if line widths and point sizes are
not literal values. When these size are linked to attributes, this parameter may be necessary.

The syntax for using a buffer is:

buffer=<bufferwidth>

where <bufferwidth> is the radius of the buffer in pixels.

Buffer also applies to the GetFeatureInfo operation. This creates a “search radius”, where feature info will be
returned for the area around the location of the request. This is useful when working with an OpenLayers
map (such as those generated by the Layer Preview page) as it relaxes the need to click precisely on a point
for the appropriate feature info to be returned.

Both in the GetMap and in the GetFeatureInfo cases the default buffer value is computed automatically
for each layer by inspecting the associated style. This happens by visiting the style, checking all active
symbolizers, and returning the size of the biggest one (biggest point symbolizer, thickest line symbolizer).
This automatic inspection won’t work if:

• the SLD contains sizes that are specified as feature attribute values

• the SLD contains external graphics and does not specify their size explicitly

In case the automatic evaluation fails, the following defaults apply:

• 0 pixels for GetMap requests

• 2 pixels for GetFeatureInfo requests

cql_filter

The cql_filter parameter is similar to the filter parameter, expect that the filter is encoded using CQL
(Common Query Language). This makes the request much more human readable. However, CQL isn’t as
flexible as OGC filters, and can’t encode as many types of filters as the OGC specification does. In particular,
filters by feature ID are not supported. If more than one layer is specified in the layers parameter, then
more than one filter can be specified here, each corresponding to a layer.

An example of the same filter as above using CQL:

cql_filter=INTERSECT(the_geom,%20POINT%20(-74.817265%2040.5296504))

env

The env parameter defines the set of substitution values that can be used in SLD variable substitution. The
syntax is:

358 Chapter 9. Services

GeoServer User Manual, Release 2.1-RC4

param1:value1;param2:value2;...

featureid

The featureid parameter filters by feature ID, a unique value given to all features. Multiple features can
be selected by separating the featureids by comma, as seen in this example:

featureid=states.1,states.45

filter

The WMS specification does not allow for much filtering of data. GeoServer’s WMS filter options are
expanded to match those allowed by WFS.

The filter parameter encodes a list of OGC filters (in XML). The list is enclosed in () parenthesis. When
this parameter is used in a GET request, the brackets of XML need to be URL-encoded. If more than one
layer is specified in the layers parameter, then more than one filter can be specified here, each correspond-
ing to a layer.

An example of an OGC filter encoded as part of a GET request:

filter=%3CFilter%20xmlns:gml=%22http://www.opengis.net/gml%22%3E%3CIntersects%3E%3CPropertyName%3Ethe_geom%3C/PropertyName%3E%3Cgml:Point%20srsName=%224326%22%3E%3Cgml:coordinates%3E-74.817265,40.5296504%3C/gml:coordinates%3E%3C/gml:Point%3E%3C/Intersects%3E%3C/Filter%3E

format_options

The format_options is a container for parameters that are format specific. The options in it are expressed
as:

param1:value1;param2:value2;...

The currently recognized format options are:

• antialiasing (on, off, text): allows to control the use of antialiased rendering in raster outputs.

• dpi: sets the rendering dpi in raster outputs. The OGC standard dpi is 90, but if you need to perform
high resolution printouts it is advised to grab a larger image and set a higher dpi. For example, to
print at 300dpi a 100x100 image it is advised to ask for a 333x333 image setting the dpi value at 300.
In general the image size should be increased by a factor equal to targetDpi/90 and the target dpi
set in the format options.

• layout: chooses a named layout for decorations, a tool for visually annotating GeoServer’s WMS
output. Layouts can be used to add information such as compasses and legends to the maps you re-
trieve from GeoServer. WMS Decorations are discussed further in the Advanced GeoServer Configuration
section.

kmattr

The kmattr parameter determines whether the KML returned by GeoServer should include clickable at-
tributes or not. This parameter primarily affects Google Earth rendering. The syntax is:

kmattr=[true|false]

9.2. Web Map Service 359

GeoServer User Manual, Release 2.1-RC4

kmscore

The kmscore parameter sets whether GeoServer should render KML data as vector or raster. This param-
eter primarily affects Google Earth rendering. The syntax is:

kmscore=<value>

The possible values for this parameter are between 0 (force raster output) and 100 (force vector output).

maxFeatures and startIndex

GeoServer WMS supports the parameters maxFeatures and startIndex. Both can be used together to
provide “paging” support. This is helpful in situations such as KML crawling, where it is desirable to be
able to retrieve the map in sections when there are a large number of features.

Note that not every layer will support paging.

The startindex parameter specifies with a positive integer the index in an ordered list of features to start
rendering. For a layer to be queried this way, the underlying feature source shall support paging (such as
PostGIS).

The maxfeatures parameter sets a limit on the amount of features rendered, using a positive integer.
When used with startindex, the features rendered will be the ones starting at the startindex value.

namespace

WMS GetCapabilities requests can be filtered to only return layers corresponding to a particular namespace.
The syntax is:

namespace=<namespace>

where <namespace> is the namespace prefix.

Using an invalid namespace prefix will not cause any errors, but the document returned will not contain
information on any layers, only layer groups.

Note: This only affects the capabilities document, and not any other requests. WMS requests given to other
layers, even when a different namespace is specified, will still be processed.

palette

It is sometimes advisable (for speed and bandwidth reasons) to downsample the bit depth of returned
maps. The way to do this is to create an image with a limited color palette, and save it in the palettes
directory inside your GeoServer Data Directory. It is then possible to specify the palette parameter of the
form:

palette=<image>

where <image> is the filename of the palette image (without the extension). To force a web-safe palette,
you can use the syntax palette=safe. For more information see the tutorial on Paletted Images

360 Chapter 9. Services

GeoServer User Manual, Release 2.1-RC4

tiled

When using a tiled client such as OpenLayers, there can be issues with duplicated labels. To deal with this,
GeoServer can create metatiles, that is, images are rendered and then split into smaller tiles (by default in
a 3x3 pattern) before being served. In order for meta-tiling to work properly, the tile size must be set to
256x256 pixels, and two extra parameters must be set.

The tiled parameter is of the form:

tiled=[yes|no]

For metatiling to function, this must be set to yes.

tilesorigin

The tilesorigin parameter, also necessary for metatiling, is of the form:

tilesorigin=x,y

where x and y are the coordinates of the lower left corner (the “origin”) of the tile grid system in Open-
Layers. A good way to setup the tilesorigin in OpenLayers is referencing the map extents directly (if the
max extents are modified dynamically, also remember to update the tilesorigin of each meta-tiled layer
accordingly):

1 var options = {
2 ...
3 maxExtent: new OpenLayers.Bounds(-180, -90, 180, 90),
4 ...
5 };
6 map = new OpenLayers.Map(’map’, options);
7

8 tiled = new OpenLayers.Layer.WMS(
9 "Layer name", "http://localhost:8080/geoserver/wms",

10 {
11 srs: ’EPSG:4326’,
12 width: 391,
13 styles: ’’,
14 height: 550,
15 layers: ’layerName’,
16 format: ’image/png’,
17 tiled: true,
18 tilesorigin: [map.maxExtent.left, map.maxExtent.bottom]
19 },
20 {buffer: 0}
21);

9.2.5 Global variables affecting WMS

This document details the set of global variables that can affect WMS behaviour. Each global variable can
be set as an environment variable, as a servlet context variable, or as a Java system property, just like the
well known GEOSERVER_DATA_DIRECTORY setting. Refer to Setting the Data Directory for details on how
a global variable can be specified.

9.2. Web Map Service 361

GeoServer User Manual, Release 2.1-RC4

MAX_FILTER_RULES

A integer number (defaults to 20) When drawing a style containing multiple active rules the renderer com-
bines the filters of the rules in OR and adds them to the standard bounding box filter. This behaviour is
active up until the maximum number of filter rules is reached, past that the rule filters are no more added
to avoid huge queries. By default up to 20 rules are combined, past 20 rules only the bounding box filter is
used. Turning it off (setting it to 0) can be useful if the styles are mostly classifications, detrimental if the
rule filters are actually filtering a good amount of data out.

OPTIMIZE_LINE_WIDTH

Can be true or false (defaults to: false). When true any stroke whose width is less than 1.5 pixels gets
slimmed down to “zero”, which is actually not zero, but a very thin line. That was the behaviour GeoServer
used to default to before the 2.0 series. When false the stroke width is not modified and it’s possible to
specify widths less than one pixel. This is the default behaviour starting from the 2.0.0 release

USE_STREAMING_RENDERER

Can be true or false (defaults to: false). When true the StreamingRenderer is used for all data. The
StreamingRenderer is the one used by default for all data sources by shapefiles, it is usually faster at rendering
styles with multiple FeatureTypeStyle elements but slower at rendering high amount of data.

9.2.6 GetLegendGraphic

This chapter describes whether to use the GetLegendGraphics request. The SLD Specifications 1.0.0 gives
a good description about GetLegendGraphic requests:

The GetLegendGraphic operation itself is optional for an SLD-enabled WMS. It provides a general mechanism for
acquiring legend symbols, beyond the LegendURL reference of WMS Capabilities. Servers supporting the GetLe-
gendGraphic call might code LegendURL references as GetLegendGraphic for interface consistency. Vendor-specific
parameters may be added to GetLegendGraphic requests and all of the usual OGC-interface options and rules apply.
No XML-POST method for GetLegendGraphic is presently defined.

Here is an example invocation:

http://localhost:8080/geoserver/wms?REQUEST=GetLegendGraphic&VERSION=1.0.0&FORMAT=image/png&WIDTH=20&HEIGHT=20&LAYER=topp:states

which would produce four 20x20 icons that graphically represent the rules of the default style of the
topp:states layer.

Figure 9.1: Sample legend

362 Chapter 9. Services

GeoServer User Manual, Release 2.1-RC4

In the following table the whole set of GetLegendGraphic parameters that can be used.

Parame-
ter

Re-
quired

Description

RE-
QUEST

Re-
quired

Value must be “GetLegendRequest”.

LAYER Re-
quired

Layer for which to produce legend graphic.

STYLE Op-
tional

Style of layer for which to produce legend graphic. If not present, the default style
is selected. The style may be any valid style available for a layer, including non-SLD
internally-defined styles.

FEA-
TURE-
TYPE

Op-
tional

Feature type for which to produce the legend graphic. This is not needed if the
layer has only a single feature type.

RULE Op-
tional

Rule of style to produce legend graphic for, if applicable. In the case that a style has
multiple rules but no specific rule is selected, then the map server is obligated to
produce a graphic that is representative of all of the rules of the style.

SCALE Op-
tional

In the case that a RULE is not specified for a style, this parameter may assist the
server in selecting a more appropriate representative graphic by eliminating
internal rules that are out-of-scope. This value is a standardized scale denominator,
defined in Section 10.2.

SLD Op-
tional

This parameter specifies a reference to an external SLD document. It works in the
same way as the SLD= parameter of the WMS GetMap operation.

SLD_BODYOp-
tional

This parameter allows an SLD document to be included directly in an HTTP-GET
request. It works in the same way as the SLD_BODY= parameter of the WMS
GetMap operation.

FOR-
MAT

Re-
quired

This gives the MIME type of the file format in which to return the legend graphic.
Allowed values are the same as for the FORMAT= parameter of the WMS GetMap
request.

WIDTH Op-
tional

This gives a hint for the width of the returned graphic in pixels. Vector-graphics can
use this value as a hint for the level of detail to include.

HEIGHT Op-
tional

This gives a hint for the height of the returned graphic in pixels.

EXCEP-
TIONS

Op-
tional

This gives the MIME type of the format in which to return exceptions. Allowed
values are the same as for the EXCEPTIONS= parameter of the WMS GetMap
request.

Raster Legends Explained

This chapter aim to briefly describe the work that I have performed in order to support legends for raster
data that draw information taken from the various bits of the SLD 1.0 RasterSymbolizer element. Recall,
that up to now there was no way to create legends for raster data, therefore we have tried to fill the gap
by providing an implementation of the getLegendGraphic request that would work with the ColorMap
element of the SLD 1.0 RasterSymbolizer. Notice that some “debug” info about the style, like colormap
type and band used are printed out as well.

What’s a raster legend

Here below I have drawn the structure of a typical legend, where some elements of interests are parame-
terized.

Take as an instance one of the SLD files attached to this page, each row in the above table draws its essence
from the ColorMapEntry element as shown here below:

9.2. Web Map Service 363

GeoServer User Manual, Release 2.1-RC4

Figure 9.2: The structure of a typical legend

<ColorMapEntry color="#732600" quantity="9888" opacity="1.0" label="<-70 mm"/>

The producer for the raster legend will make use of this elements in order to build the legend, with this
regards, notice that:

• the width of the Color element is driven by the requested width for the GetLegendGraphic request

• the width and height of label and rules is computed accordingly to the used Font and Font size for
the prepared text (no new line management for the moment)

• the height of the Color element is driven by the requested width for the GetLegendGraphic request,
but notice that for ramps we expand this a little since the goal is to turn the various Color elements
into a single long strip

• the height of each row is set to the maximum height of the single elements

• the width of each row is set to the sum of the width of the various elements plus the various paddings

• dx,dy the spaces between elements and rows are set to the 15% of the requested width and height.
Notice that dy is ignored for the colormaps of type ramp since they must create a continous color
strip.

• mx,my the margins from the border of the legends are set to the 1.5% of the total size of the legend

Just to jump right to the conclusions (which is a bad practice I know, but no one is perfect), here below I
am adding an image of a sample legend with all the various options at work. The request that generated it
is the following:

http://localhost:8081/geoserver/wms?REQUEST=GetLegendGraphic&VERSION=1.0.0&FORMAT=image/png&WIDTH=100&HEIGHT=20&LAYER=it.geosolutions:di08031_da&LEGEND_OPTIONS=forceRule:True;dx:0.2;dy:0.2;mx:0.2;my:0.2;fontStyle:bold;borderColor:0000ff;border:true;fontColor:ff0000;fontSize:18

Do not worry if it seems like something written in ancient dead language, I am going to explain the various
params here below. Nevertheless it is important to point out that basic info on how to create and set params
can be found in this page.

364 Chapter 9. Services

http://geoserver.org/display/GEOSDOC/GetLegendGraphic+Improvements

GeoServer User Manual, Release 2.1-RC4

Figure 9.3: Example of a raster legend

9.2. Web Map Service 365

GeoServer User Manual, Release 2.1-RC4

Raster legends’ types

As you may know (well, actually you might not since I never wrote any real docs about the RasterSymbol-
izer work I did) GeoServer supports three types of ColorMaps:

• ramp this is what SLD 1.0 dictates, which means a linear interpolation weighted on values between
the colors of the various ColorMapEntries.

• values this is an extensions that allows link quantities to colors as specified by the ColorMapEntries
quantities. Values not specified are translated into transparent pixels.

• classes this is an extensions that allows pure classifications based o intervals created from the Col-
orMapEntries quantities. Values not specified are translated into transparent pixels.

Here below I am going to list various examples that use the attached styles on a rainfall floating point
geotiff.

ColorMap type is VALUES

Refer to the SLD rainfall.sld in attachment.

ColorMap type is CLASSES

Refer to the SLD rainfall_classes.sld in attachment.

ColorMap type is RAMP

Refer to the SLD rainfall_classes.sld in attachment. Notice that the first legend show the default border
behavior while the second has been force to draw a border for the breakpoint color of the the colormap
entry quantity described by the rendered text. Notice that each color element has a part that show the fixed
color from the colormap entry it depicts (the lowest part of it, the one that has been outlined by the boder in
the second legend here below) while the upper part of the element has a gradient tha connects each element
to the previous one to point out the fact that we are using linear interpolation.

The various control parameters and how to set them

I am now going to briefly explain the various parameters tht we can use to control the layout and content
of the legend (refer also to this page). Here below I have put a request that puts all the various options at
tow:

http://localhost:8081/geoserver/wms?REQUEST=GetLegendGraphic&VERSION=1.0.0&FORMAT=image/png&WIDTH=100&HEIGHT=20&LAYER=it.geosolutions:di08031_da&LEGEND_OPTIONS=forceRule:True;dx:0.2;dy:0.2;mx:0.2;my:0.2;fontStyle:bold;borderColor:0000ff;border:true;fontColor:ff0000;fontSize:18

Let’s now examine all the interesting elements, one by one. Notice that I am not going to discuss the
mechanics of the GetLegendGraphic operation, for that you may want to refer to the SLD 1.0 spec, my goal
is to briefly discuss the LEGEND_OPTIONS parameter.

• forceRule (boolean) by defaul rules for a ColorMapEntry are not drawn to keep the legend small and
compact, unless there are not labels at all. You can change this behaviour by setting this parameter to
true.

• dx,dy,mx,my (double) can be used to set the margin and the buffers between elements

366 Chapter 9. Services

http://geoserver.org/display/GEOSDOC/GetLegendGraphic+Improvements

GeoServer User Manual, Release 2.1-RC4

Figure 9.4: Raster legend - VALUES type

9.2. Web Map Service 367

GeoServer User Manual, Release 2.1-RC4

Figure 9.5: Raster legend - CLASSES type

368 Chapter 9. Services

GeoServer User Manual, Release 2.1-RC4

Figure 9.6: Raster legend - RAMP type

9.2. Web Map Service 369

GeoServer User Manual, Release 2.1-RC4

• fontStyle (string) can be set to italic or bold to control the text style. Other combination are not
allowed right now but we could implement that as well.

• fontSize (integer) allows us to set the Font size for the various text elements. Notice that default size
is 12.

• border (boolean) activates or deactivates the boder on the color elements in order to make the sepa-
rations cleare. Notice that I decided to always have a line that would split the various color elements
for the ramp type of colormap.

• borderColor (hex) allows us to set the color for the border as explained above. Valid values are hex
values withouth the leading #.

• fontColor (hex) allows us to set the color for the text of rules and labels (see above for recommenda-
tion on how to create values).

9.2.7 WMS reference

Introduction

The Web Map Service (WMS) is a standard created by the OGC that refers to the sending and receiving of
georeferenced images over HTTP. These images can be produced from both vector and raster data formats.
The most widely used version of WMS is 1.1.1, which GeoServer supports. The Styled Layer Descriptor
(SLD) standard specifies extensions to WMS to control the styling of the WMS over the web, and GeoServer
supports all these additional operations as well.

An important distinction must be made between WMS and Web Feature Service, which refers to the sending
and receiving of raw geographic information, before it has been rendered as a digital image.

Benefits of WMS

WMS provides a standard interface for how to request a geospatial image. The main benefit of this is that
clients can request images from multiple servers, and then combine them in to one view for the user. The
standard guarantees that these images can all be overlaid on one another as they actually would be in
reality. Numerous servers and clients support WMS.

Operations

WMS can perform the following operations:

Operation Description
GetCapabilities Retrieves a list of the server’s data, as well as valid WMS operations and

parameters
GetMap Retrieves the image requested by the client
GetFeatureInfo
(optional)

Retrieves the actual data, including geometry and attribute values, for a
pixel location

DescribeLayer
(optional)

Indicates the WFS or WCS to retrieve additional information about the
layer.

GetLegendGraphic
(optional)

General mechanism for retrieving generated legend symbols

Additionally a WFS server that supports transactions is sometimes known as a WFS-T. GeoServer fully
supports transactions.

370 Chapter 9. Services

http://www.opengeospatial.org/standards/wms

GeoServer User Manual, Release 2.1-RC4

GetCapabilities

The GetCapabilities operation is a request to a WMS server for a list of what operations and services
(“capabilities”) are being offered by that server.

A typical GetCapabilities request would look like this (at URL http://www.example.com/wms):

Using a GET request (standard HTTP):

http://www.example.com/wms?
service=wms&
version=1.1.1&
request=GetCapabilities

Here there are three parameters being passed to our WMS server, service=wms, version=1.1.1, and
request=GetCapabilities. At a bare minimum, it is required that a WFS request have these three pa-
rameters (service, version, and request). GeoServer relaxes these requirements (setting the default version
if omitted), but “officially” they are mandatory, so they should always be included. The service key tells the
WMS server that a WMS request is forthcoming. The version key refers to which version of WMS is being
requested. The request key is where the actual GetCapabilities operation is specified.

The Capabilities document that is returned is a long and complex chunk of XML, but very important, and so
it is worth taking a closer look. There are three main components we will be discussing (other components
are beyond the scope of this document.):

Ser-
vice

This section contains basic “header” information such as the Name and basic service metadata,
as well as contact information about the company behind the WMS Server.

Re-
quest

This section describes the operations that the WMS server recognizes and the parameters and
output formats for each operation. A WMS server can be set up not to respond to all
aforementioned operations.

Layer This section lists the available projectsions and layers. In GeoServer they are listed in the form
“namespace:layer”. Each layer also includes service metadata, like title, abstract and keywords.

GetMap

The purpose of the GetMap request is to get the actual image. A client should have all the information it
needs to make such a request after it understands the Capabilities document. Detailing all the potential
parameters for a GetMap request is currently outside the scope of this document. But the basics are letting
clients specify a bounding box, a width and a height, a spatial reference system, a format, and a style.

A great way to get to know the GetMap parameters is to experiment with the WMS Reflector. The options
for the format parameter in GeoServer can be found in the WMS output formats section. And there are a
number of vendor specific parameters that GeoServer makes availabe, see WMS output formats

GetFeatureInfo

The GetFeatureInfo operation requests the actual spatial data. It is very similar to the WFS GetFeature
operation, and indeed since GeoServer always provides a WFS we recommend using it whenever possible.
It provides more flexibility in both input and output. The one advantage that GetFeatureInfo has is that it
issues its request as an x,y pixel value from a returned WMS image. So it is easier to use by a naive client
that doesn’t understand all the geographic referencing needed.

The operation also allows an html output that is defined on the server side. Again, we recommend that
the client use WFS GetFeature, and style the raw data in the way that it wants. But for those who for
some reason need to style html on the server side, GeoServer makes this possible. See the tutorial on
GetFeatureInfo Templates for information on how to template the html output.

9.2. Web Map Service 371

GeoServer User Manual, Release 2.1-RC4

DescribeLayer

The DescribeLayer is used primarily by clients that understand SLD based WMS. In order to make an
SLD one needs to know the structure of the data. WMS and WFS both have good operations to do this,
thankfully the DescribeLayer operation just routes the client to the appropriate service.

GetLegendGraphic

GetLegendGraphic is an operation that provides a general mechanism for acquiring legend symbols, be-
yond the LegendURL reference of WMS Capabilities. It will generate a legend automatically, based on the
style defined on the server, or even based on a user supplied SLD. For more information on this operation
and the various options that GeoServer supports see GetLegendGraphic.

9.3 Web Coverage Service

9.3.1 WCS basics

GeoServer provides support for Open Geospatial Consortium (OGC) Web Map Service (WCS) versions
1.0 and 1.1. One can think of WCS as the equivalent of Web Feature Service, but for raster data instead of
vector data. It lets you get at the raw coverage information, not just the image. GeoServer is the reference
implementation for WCS 1.1.

9.3.2 WCS configuration

Coverage processing

The WCS processing chain can be tuned in respect of how raster overviews and read subsampling are used.

The overview policy has four possible values:

Option Description Ver-
sion

Lower resolution
overview

Looks up the two overviews with a resolution closest to the one requested
and chooses the one at the lower resolution.

2.0.3

Don’t use
overviews

Overviews will be ignored, the data at its native resolution will be used
instead. This is the default value.

2.0.3

Higher
resolution
overview

Looks up the two overviews with a resolution closest to the one requested
and chooses the one at the higher resolution.

2.0.3

Closest overview Looks up the overview closest to the one requested 2.0.3

While reading coverage data at a resolution lower than the one available on persistent storage its common
to use subsampling, that is, read one every N pixels as a way to reduce the resolution of the data read in
memory. Use subsampling controls wheter subsampling is enabled or not.

Request limits

The request limit options allow the administrator to limit the resources consumed by each WCS
GetCoverage request.

372 Chapter 9. Services

GeoServer User Manual, Release 2.1-RC4

The request limits limit the size of the image read from the source and the size of the image returned to the
client. Both of these limits are to be considered a worst case scenario and are setup to make sure the server
never gets asked to deal with too much data.

Option Description Ver-
sion

Maximum
input
memory

Sets the maximum amount of memory, in kilobytes, a GetCovearge request
might use, at most, to read a coverage from the data source. The memory is
computed as rw * rh * pixelsize, where rw and rh are the size of the
raster to be read and pixelsize is the dimension or a pixel (e.g., a RGBA
image will have 32bit pixels, a batimetry might have 16bit signed int ones)

2.0.3

Maximum
output
memory

Sets the maximum amount of memory, in kilobytes, a GetCoverage request
might use, at most, to host the resulting raster. The memory is computed as ow
* oh * pixelsize, where ow and oh are the size of the raster to be
generated in output.

2.0.3

To understand the limits let’s consider a very simplified examle in which no tiles and overviews enter the
game:

• The request hits a certain area of the original raster. Reading it at full resolution requires grabbing a
raster of size rw * rh, which has a certain number of bands, each with a certain size. The amount of
memory used for the read will be rw * rh * pixelsize. This is the value measured by the input
memory limit

• The WCS performs the necessary processing: band selection, resolution change (downsampling or
upsampling), reprojection

• The resuling raster will have size ow * oh and will have a certain number of bands, possibly less
than the input data, each with a certain size. The amount of memory used for the final raster will be
ow * oh * pixelsize. This is the value measured by the output memory limit.

• Finally the resulting raster will be encoded in the output format. Depending on the output format
structure the size of the result might be higher than the in memory size (ArcGrid case) or smaller (for
example in the case of GeoTIFF output, which is normally LZW compressed)

In fact reality is a bit more complicated:

• The input source might be tiled, which means there is no need to fully read in memory the region, but
it is sufficient to do so one tile at a time. The input limits won’t consider inner tiling when computing
the limits, but if all the input coverages are tiled the input limits should be designed considering the
amount of data to be read from the persistent storage as opposed to the amount of data to be stored
in memory

• The reader might be using overviews or performing subsampling during the read to avoid actually
reading all the data at the native resolution should the output be subsampled

• The output format might be tile aware as well (GeoTIFF is), meaning it might be able to write out one
tile at a time. In this case not even the output raster will be stored in memory fully at any given time.

Only a few input formats are so badly structure that they force the reader to read the whole input data in
one shot, and should be avoided. Examples are: * JPEG or PNG images with world file * Single tiled and
JPEG compressed GeoTIFF files

9.3.3 WCS output formats

WCS output formats are configured coverage by coverage. The current list of output formats follows:

Images:

9.3. Web Coverage Service 373

GeoServer User Manual, Release 2.1-RC4

• JPEG - (format=jpeg)

• GIF - (format=gif)

• PNG - (format=png)

• Tiff - (format=tif)

• BMP - (format=bmp)

Georeferenced formats:

• GeoTiff - (format=geotiff)

• GTopo30 - (format=gtopo30)

• ArcGrid - (format=ArcGrid)

• GZipped ArcGrid - (format=ArcGrid-GZIP)

Beware, in the case of ArcGrid, the GetCoverage request must make sure the x and y resolution are equal,
otherwise an exception will be thrown (ArcGrid is designed to have square cells).

9.3.4 WCS Vendor Parameters

Requests to the WCS GetCapabilities operation can be filtered to only return layers corresponding to a
particular namespace.

Sample code:

http://example.com/geoserver/wcs?
service=wcs&
version=1.0.0&
request=GetCapabilities&
namespace=topp

Using an invalid namespace prefix will not cause any errors, but the document returned will not contain
information on any layers.

9.3.5 WCS reference

Introduction

The Web Coverage Service (WCS) is a standard created by the OGC that refers to the receiving of geospatial
information as ‘coverages’: digital geospatial information representing space-varying phenomena. One can
think of it as Web Feature Service for raster data. It gets the ‘source code’ of the map, but in this case its not
raw vectors but raw imagery.

An important distinction must be made between WCS and Web Map Service. They are similar, and can
return similar formats, but a WCS is able to return more information, including valuable metadata and
more formats. It additionally allows more precise queries, potentially against multi-dimensional backend
formats.

Benefits of WCS

WCS provides a standard interface for how to request the raster source of a geospatial image. While a WMS
can return an image it is generally only useful as an image. The results of a WCS can be used for complex

374 Chapter 9. Services

http://www.opengeospatial.org/standards/wcs

GeoServer User Manual, Release 2.1-RC4

modeling and analysis, as it often contains more information. It also allows more complex querying - clients
can extract just the portion of the coverage that they need.

Operations

WCS can perform the following operations:

Operation Description
GetCapabilitiesRetrieves a list of the server’s data, as well as valid WCS operations and parameters
DescribeCoverageRetrieves an XML document that fully describes the request coverages.
GetCoverage Returns a coverage in a well known format. Like a WMS GetMap request, but with

several extensions to support the retrieval of coverages.

GetCapabilities

The GetCapabilities operation is a request to a WCS server for a list of what operations and services (“ca-
pabilities”) are being offered by that server.

A typical GetCapabilities request would look like this (at URL http://www.example.com/wcs):

Using a GET request (standard HTTP):

http://www.example.com/wcs?
service=wcs&
AcceptVersions=1.1.0&
request=GetCapabilities

Here there are three parameters being passed to our WCS server, service=wcs,
AcceptVersions=1.1.0, and request=GetCapabilities. At a bare minimum, it is required
that a WCS request have the service and request parameters. GeoServer relaxes these requirements (setting
the default version if omitted), but “officially” they are mandatory, so they should always be included.
The service key tells the WCS server that a WCS request is forthcoming. The AcceptsVersion key refers to
which version of WCS is being requested. The request key is where the actual GetCapabilities operation is
specified.

WCS additionally supports the Sections parameter that lets a client only request a specific section of the
Capabilities Document.

DescribeCoverage

The purpose of the DescribeCoverage request is to additional information about a Coverage a client wants
to query. It returns information about the crs, the metadata, the domain, the range and the formats it is
available in. A client generally will need to issue a DescribeCoverage request before being sure it can make
the proper GetCoverage request.

GetCoverage

The GetCoverage operation requests the actual spatial data. It can retrieve subsets of coverages, and the
result can be either the coverage itself or a reference to it. The most powerful thing about a GetCoverage
request is its ability to subset domains (height and time) and ranges. It can also do resampling, encode in
different data formats, and return the resulting file in different ways.

9.3. Web Coverage Service 375

GeoServer User Manual, Release 2.1-RC4

9.4 Virtual OWS Services

The different types of services in GeoServer include WFS, WMS, and WCS, commonly referred to as “OWS”
services. These services are global in that each service publishes ever layer configured on the server. WFS
publishes all vector layer (feature types), WCS publishes all raster layers (coverages), and WMS publishes
everything.

A virtual service is a view of the global service that consists only of a subset of the layers. Virtual services
are based on GeoServer workspaces. For each workspace that exists a virtual service exists along with it.
The virtual service publishes only those layers that fall under the corresponding workspace.

Warning: Virtual services only apply to the core OWS services, and not OWS services accessed through
GeoWebCache. It also does not apply to other subsystems such as REST.

When a client accesses a virtual service that client only has access to those layers published by that virtual
service. Access to layers in the global service via the virtual service will result in an exception. This makes
virtual services ideal for compartmentalizing access to layers. A service provider may wish to create multi-
ple services for different clients handing one service url to one client, and a different service url to another
client. Virtual services allow the service provider to achieve this with a single GeoServer instance.

9.4.1 Filtering by workspace

Consider the following snippets of the WFS capabilities document from the GeoServer release configuration
that list all the feature types:

http://localhost:8080/geoserver/wfs?request=GetCapabilities

<wfs:WFS_Capabilities>

<FeatureType xmlns:tiger="http://www.census.gov">
<Name>tiger:poly_landmarks</Name>

--
<FeatureType xmlns:tiger="http://www.census.gov">
<Name>tiger:poi</Name>

--
<FeatureType xmlns:tiger="http://www.census.gov">
<Name>tiger:tiger_roads</Name>

--
<FeatureType xmlns:sf="http://www.openplans.org/spearfish">
<Name>sf:archsites</Name>

--
<FeatureType xmlns:sf="http://www.openplans.org/spearfish">
<Name>sf:bugsites</Name>

--
<FeatureType xmlns:sf="http://www.openplans.org/spearfish">
<Name>sf:restricted</Name>

--
<FeatureType xmlns:sf="http://www.openplans.org/spearfish">
<Name>sf:roads</Name>

--
<FeatureType xmlns:sf="http://www.openplans.org/spearfish">
<Name>sf:streams</Name>

--
<FeatureType xmlns:topp="http://www.openplans.org/topp">

376 Chapter 9. Services

GeoServer User Manual, Release 2.1-RC4

<Name>topp:tasmania_cities</Name>
--

<FeatureType xmlns:topp="http://www.openplans.org/topp">
<Name>topp:tasmania_roads</Name>

--
<FeatureType xmlns:topp="http://www.openplans.org/topp">
<Name>topp:tasmania_state_boundaries</Name>

--
<FeatureType xmlns:topp="http://www.openplans.org/topp">
<Name>topp:tasmania_water_bodies</Name>

--
<FeatureType xmlns:topp="http://www.openplans.org/topp">
<Name>topp:states</Name>

--
<FeatureType xmlns:tiger="http://www.census.gov">
<Name>tiger:giant_polygon</Name>

</wfs:WFS_Capabilities>

The above document lists every feature type configured on the server. Now consider the following capa-
bilities request:

http://localhost:8080/geoserver/topp/wfs?request=GetCapabilities

The part of interest in the above request is the “topp” prefix to the wfs service. The above url results in the
following feature types in the capabilities document:

<wfs:WFS_Capabilities>

<FeatureType xmlns:topp="http://www.openplans.org/topp">
<Name>topp:tasmania_cities</Name>

--
<FeatureType xmlns:topp="http://www.openplans.org/topp">
<Name>topp:tasmania_roads</Name>

--
<FeatureType xmlns:topp="http://www.openplans.org/topp">
<Name>topp:tasmania_state_boundaries</Name>

--
<FeatureType xmlns:topp="http://www.openplans.org/topp">
<Name>topp:tasmania_water_bodies</Name>

--
<FeatureType xmlns:topp="http://www.openplans.org/topp">
<Name>topp:states</Name>

</wfs:WFS_Capabilities>

The above feature types correspond to those configured on the server as part of the “topp” workspace.

The consequence of a virtual service is not only limited to the capabilities document of the service. When a
client accesses a virtual service it is restricted to only those layers for all operations. For instance, consider
the following WFS feature request:

http://localhost:8080/geoserver/topp/wfs?request=GetFeature&typename=tiger:roads

The above request results in an exception. Since the request feature type “tiger:roads” is not in the “topp”
workspace the client will receive an error stating that the requested feature type does not exist.

9.4. Virtual OWS Services 377

GeoServer User Manual, Release 2.1-RC4

9.4.2 Filtering by layer

It is possible to further filter a global service by specifying the name of layer as part of the virtual service.
For instance consider the following capabilities document:

http://localhost:8080/geoserver/topp/states/wfs?request=GetCapabilities

The part of interest is the “states” prefix to the wfs service. The above url results in the following capabilities
document that contains a single feature type:

<wfs:WFS_Capabilities>

<FeatureType xmlns:topp="http://www.openplans.org/topp">
<Name>topp:states</Name>

<wfs:WFS_Capabilities>

9.4.3 Turning off global services

It is possible to completely restrict access to the global OWS services by setting a configuration flag. When
global access is disabled OWS services may only occur through a virtual service. Any client that tries to
access a service globally will receive an exception.

To disable global services log into the GeoServer web administration interface and navigate to “Global
Settings”. Uncheck the “Enable Global Services” check box.

378 Chapter 9. Services

GeoServer User Manual, Release 2.1-RC4

9.4. Virtual OWS Services 379

GeoServer User Manual, Release 2.1-RC4

380 Chapter 9. Services

CHAPTER 10

RESTful Configuration

GeoServer provides a RESTful interface through which clients can configure an instance through simple
HTTP calls. With it clients can programatically configure the data served by GeoServer.

To learn more proceed to the Overview of REST section. For details about the API and some hands on
examples proceed to the REST Configuration API Reference or REST Configuration Examples sections.

10.1 Overview of REST

REST is an acronym for “REpresentational State Transfer”. The basic idea of REST is to rely on a fixed set
of operations on named resources, where the representation of each resource is the same for retrieving and
setting information. In other words, if you retrieve data in an XML format, you can send data back to the
server in the same XML format to set it.

Operations on resources are implemented with the standard primitives of HTTP: GET, DELETE, PUT, POST,
HEAD, etc. Each resource is represented as a standard URI.

For more information about REST visit the wikedia page.

10.2 REST Configuration API Reference

10.2.1 Formats and representations

A format specifies how a resource should be represented. A format is used:

• In an operation to specify what representation should be returned to the client

• In a POST or PUT operation to specify the representation being sent to the server

In a GET operation the format can be specified in a number of ways. The first is with the Accepts header.
For instance setting the header to “text/xml” would specify the desire to have the resource returned as
XML. The second method of specifying the format is via file extension. For example consider the resource
“foo”. To request a representation of foo as XML the request uri would end with “foo.xml”. To request as
JSON the request uri would end with “foo.json”. When no format is specified the server will use its own
internal format, usually html.

381

http://en.wikipedia.org/wiki/Representational_State_Transfer

GeoServer User Manual, Release 2.1-RC4

In a POST or PUT operation the format specifies 1) the representatin of the content being sent to the server,
and 2) the representation of the resposne to be sent back. The former is specified with the Content-type
header. To send a representation in XML, the content type “text/xml” or “application/xml” would be
used. The latter is specified with the Accepts header as specified in the above paragraph describing a
GET operation.

The following table defines the Content-type values for each format:

Format Content-type
XML application/xml
JSON application/json
HTML application/html
SLD application/vnd.ogc.sld+xml

10.2.2 Authentication

POST, PUT, and DELETE requests (requests that modify resources) require the client to be authenticated.
Currently the only supported method of authentication is Basic authentication. See the examples section for
examples of how to perform authentication with various clients and environments.

10.2.3 Status codes

A Http request uses a status code to relay the outcome of the request to the client. Different status codes
are used for various purposes through out this document. These codes are described in detail by the http
specification.

10.2.4 Workspaces

A workspace is a grouping of data stores. More commonly known as a namespace, it is commonly used
to group data that is related in some way.

Note: For GeoServer 1.x a workspace can be considered the equivalent of a namespace, and the two
are kept in sync. For example, the namespace “topp, http://openplans.org/topp” corresponds to the
workspace “topp”.

Operations

/workspaces[.<format>]

Method Action Return Code Formats Default Format
GET List all workspaces 200 HTML, XML, JSON HTML
POST Create a new workspace 201 with Location header XML, JSON
PUT 405
DELETE 405

Representations:

• HTML

• XML

• JSON

382 Chapter 10. RESTful Configuration

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
http://openplans.org/topp

GeoServer User Manual, Release 2.1-RC4

/workspaces/<ws>[.<format>]

Method Action Return Code Formats Default Format Parameters
GET Returns workspace ws 200 HTML, XML, JSON HTML
POST 405
PUT 200 Modify workspace ws XML, JSON
DELETE 200 Delete workspace ws XML, JSON recurse

Representations:

• HTML

• XML

• JSON

Exceptions:

• GET for a workspace that does not exist -> 404

• PUT that changes name of workspace -> 403

• DELETE against a workspace that is non-empty -> 403

The recurse parameter is used to recursively delete all resources contained by the specified workspace.
This includes data stores, coverage stores, feature types, etc... Allowable values for this parameter are
“true” or “false”. The default value is “false”.

/workspaces/default[.<format>]

Method Action Return Code Formats Default Format
GET Returns default workspace 200 HTML, XML, JSON HTML
POST 405
PUT 200 Set default workspace XML, JSON
DELETE 405

10.2.5 Namespaces

A namespace is a uniquely identifiable grouping of feature types. A namespaces is identified by a prefix
and a uri.

Note: In GeoServer 1.7.x a namespace is used to group data stores, serving the same purpose as a
workspace. In 1.7.x the two are kept in sync. Therefore when adding a new namespace a workspace
whose name matches the prefix of the namespace is implicitly created.

Operations

/namespaces[.<format>]

Method Action Return Code Formats Default Format
GET List all namespaces 200 HTML, XML, JSON HTML
POST Create a new namespace 201 with Location header XML, JSON
PUT 405
DELETE 405

Representations:

• HTML

• XML

10.2. REST Configuration API Reference 383

GeoServer User Manual, Release 2.1-RC4

• JSON

/namespaces/<ns>[.<format>]

Method Action Return Code Formats Default Format
GET Returns namespace ns 200 HTML, XML, JSON HTML
POST 405
PUT 200 Modify namespace ns XML, JSON
DELETE 200 Delete namespace ns XML, JSON

Representations:

• HTML

• XML

• JSON

Exceptions:

• GET for a namespace that does not exist -> 404

• PUT that changes prefix of namespace -> 403

• DELETE against a namespace whose corresponding workspace is non-empty -> 403

/namespaces/default[.<format>]

Method Action Return Code Formats Default Format
GET Returns default namespace 200 HTML, XML, JSON HTML
POST 405
PUT 200 Set default namespace XML, JSON
DELETE 405

10.2.6 Data stores

A data store is a source of spatial data that is vector based. It can be a file in the case of a Shapefile, a
database in the case of PostGIS, or a server in the case of a remote Web Feature Service.

Operations

/workspaces/<ws>/datastores[.<format>]

Method Action Return Code Formats Default
Format

GET List all data stores in
workspace ws

200 HTML, XML,
JSON

HTML

POST Create a new data store 201 with Location
header

XML, JSON

PUT 405
DELETE 405

Representations:

• HTML

• XML

• JSON

384 Chapter 10. RESTful Configuration

GeoServer User Manual, Release 2.1-RC4

/workspaces/<ws>/datastores/<ds>[.<format>]

Method Action Return Code Formats Default Format Parameters
GET Return data store ds 200 HTML, XML, JSON HTML
POST 405
PUT Modify data store ds
DELETE Delete data store ds recurse

Representations:

• HTML

• XML

• JSON

Exceptions:

• GET for a data store that does not exist -> 404

• PUT that changes name of data store -> 403

• PUT that changes workspace of data store -> 403

• DELETE against a data store that contains configured feature types -> 403

The recurse parameter is used to recursively delete all feature types contained by the specified data store.
Allowable values for this parameter are “true” or “false”. The default value is “false”.

/workspaces/<ws>/datastores/<ds>/file[.<extension>] /workspaces/<ws>/datastores/<ds>/url[.<extension>]
/workspaces/<ws>/datastores/<ds>/external[.<extension>]

This operation uploads a file containing spatial data into an existing datastore, or creates a new datastore.
The extension parameter specifies the type of data being uploaded. The following extensions are sup-

ported:

Extension Datastore
shp Shapefile
properties Property file
h2 H2 Database
spatialite SpatiaLite Database

The file, url, and external endpoints are used to specify the method that is used to upload the file.

The file method is used to directly upload a file from a local source. The body of the request is the file
itself.

The url method is used to indirectly upload a file from an remote source. The body of the request is a url
pointing to the file to upload. This url must be visible from the server.

The external method is used to forgo upload and use an existing file on the server. The body of the
request is the absolute path to the existing file.

10.2. REST Configuration API Reference 385

GeoServer User Manual, Release 2.1-RC4

MethodAction Re-
turn
Code

For-
mats

Default
Format

Parame-
ters

GET Get the underlying files for the data store as a zip
file with mime type application/zip.
Deprecated.

200

POST 405
PUT Uploads files to the data store ds, creating it if

necessary.
200 See

notes
below.

configure,
target,
update

DELETE 405

Exceptions:

• GET for a data store that does not exist -> 404

• GET for a data store that is not file based -> 404

When the file for a datastore are PUT, it can be as a standalone file, or as a zipped archive. The standalone
file method is only applicable to data stores that work from a single file, GML for example. Data stores like
Shapefile must be sent as a zip archive.

When uploading a zip archive the Content-type should be set to application/zip. When uploading
a standalone file the content type should be appropriately set based on the file type. The configure
parameter is used to control how the data store is configured upon file upload. It can take one of the three
values “first”, “none”, or “all”.

• first - Only setup the first feature type available in the data store. This is the default.

• none - Do not configure any feature types.

• all - Configure all feature types.

The target parameter is used to control the type of datastore that is created on the server when the data-
store being PUT to does not exist. The allowable values for this parameter are the same as for the extension
parameter. The update parameter is used to control how existing data is handled when the file is PUT into
a datastore that (a) already exists and (b) already contains a schema that matches the content of the file. It
can take one of the two values “append”, or “overwrite”.

• append - Data being uploaded is appended to the existing data. This is the default.

• overwrite - Data being uploaded replaces any existing data.

10.2.7 Feature types

A feature type is a vector based spatial resource or data set that originates from a data store. In some
cases, like Shapefile, a feature type has a one-to-one relationship with its data store. In other cases, like
PostGIS, the relationship of feature type to data store is many-to-one, with each feature type corresponding
to a table in the database.

Operations

/workspaces/<ws>/datastores/<ds>/featuretypes[.<format>]

386 Chapter 10. RESTful Configuration

GeoServer User Manual, Release 2.1-RC4

Method Action Return Code Formats Default
Format

Param-
eters

GET List all feature types in
datastore ds

200 HTML, XML,
JSON

HTML list

POST Create a new feature type 201 with Location
header

XML, JSON

PUT 405
DELETE 405

Representations:

• HTML

• XML

• JSON

Exceptions:

• GET for a feature type that does not exist -> 404

• PUT that changes name of feature type -> 403

• PUT that changes data store of feature type -> 403

The list parameter is used to control the category of feature types that are returned. It can take one of the
three values “configured”, “available”, or “all”.

• configured - Only setup or configured feature types are returned. This is the default value.

• available - Only unconfigured feature types (not yet setup) but are available from the specified
datastore will be returned.

• all - The union of configured and available.

/workspaces/<ws>/datastores/<ds>/featuretypes/<ft>[.<format>]

Method Action Return Code Formats Default Format Parameters
GET Return feature type ft 200 HTML, XML, JSON HTML
POST 405
PUT Modify feature type ft 200 XML,JSON
DELETE Delete feature type ft 200 recurse

Representations:

• HTML

• XML

• JSON

Exceptions:

• GET for a feature type that does not exist -> 404

• PUT that changes name of feature type -> 403

• PUT that changes data store of feature type -> 403

The recurse parameter is used to recursively delete all layers that reference by the specified feature type.
Allowable values for this parameter are “true” or “false”. The default value is “false”.

10.2.8 Coverage stores

A coverage store is a source of spatial data that is raster based.

10.2. REST Configuration API Reference 387

GeoServer User Manual, Release 2.1-RC4

Operations

/workspaces/<ws>/coveragestores[.<format>]

Method Action Return Code Formats Default
Format

GET List all coverage stores in
workspace ws

200 HTML, XML,
JSON

HTML

POST Create a new coverage store 201 with Location
header

XML, JSON

PUT 405
DELETE 405

Representations:

• HTML

• XML

• JSON

/workspaces/<ws>/coveragestores/<cs>[.<format>]

Method Action Return Code Formats Default Format Parameters
GET Return coverage store cs 200 HTML, XML, JSON HTML
POST 405
PUT Modify coverage store cs
DELETE Delete coverage store ds recurse

Representations:

• HTML

• XML

• JSON

Exceptions:

• GET for a coverage store that does not exist -> 404

• PUT that changes name of coverage store -> 403

• PUT that changes workspace of coverage store -> 403

• DELETE against a coverage store that contains configured coverage -> 403

The recurse parameter is used to recursively delete all coverages contained by the specified coverage
store. Allowable values for this parameter are “true” or “false”. The default value is “false”.

/workspaces/<ws>/coveragestores/<cs>/file[.<extension>]

The extension parameter specifies the type of coverage store. The following extensions are supported:

Extension Coveragestore
geotiff GeoTIFF
worldimage Geo referenced image (JPEG,PNG,TIF)
imagemosaic Image mosaic

388 Chapter 10. RESTful Configuration

GeoServer User Manual, Release 2.1-RC4

MethodAction Re-
turn
Code

For-
mats

Default
Format

Parame-
ters

GET Get the underlying files for the coverage store as
a zip file with mime type application/zip.

200

POST 405
PUT Creates or overwrites the files for coverage store

cs.
200 See

notes
below.

configure,
coverage-
Name

DELETE 405

Exceptions:

• GET for a data store that does not exist -> 404

• GET for a data store that is not file based -> 404

When the file for a coveragestore is PUT, it can be as a standalone file, or as a zipped archive. The stan-
dalone file method is only applicable to coverage stores that work from a single file, GeoTIFF for example.
Coverage stores like Image moscaic must be sent as a zip archive.

When uploading a zip archive the Content-type should be set to application/zip. When uploading
a standalone file the content type should be appropriately set based on the file type. The coverageName
parameter is used to specify the name of the coverage within the coverage store. This parameter is only
relevant if the configure parameter is not equal to “none”. If not specified the resulting coverage will
receive the same name as its containing coverage store.

Note: Currently the relationship between a coverage store and a coverage is one to one. However there is
currently work underway to support multi-dimensional coverages, so in the future this parameter is likely
to change.

10.2.9 Coverages

A coverage is a raster based data set which originates from a coverage store.

Operations

/workspaces/<ws>/coveragestores/<cs>/coverages[.<format>]

Method Action Return Code Formats Default
Format

GET List all coverages in coverage
store cs

200 HTML, XML,
JSON

HTML

POST Create a new coverage 201 with Location
header

XML, JSON

PUT 405
DELETE 405

Representations:

• HTML

• XML

• JSON

/workspaces/<ws>/coveragestores/<cs>/coverages/<c>[.<format>]

10.2. REST Configuration API Reference 389

GeoServer User Manual, Release 2.1-RC4

Method Action Return Code Formats Default Format Parameters
GET Return coverage c 200 HTML, XML, JSON HTML
POST 405
PUT Modify coverage c 200 XML,JSON
DELETE Delete coverage c 200 recurse

Representations:

• HTML

• XML

• JSON

Exceptions:

• GET for a coverage that does not exist -> 404

• PUT that changes name of coverage -> 403

• PUT that changes coverage store of coverage -> 403

The recurse parameter is used to recursively delete all layers that reference by the specified coverage.
Allowable values for this parameter are “true” or “false”. The default value is “false”.

10.2.10 Styles

A style describes how a resource (feature type or coverage) should be symbolized or rendered by a Web
Map Service. In GeoServer styles are specified with SLD.

Operations

/styles[.<format>]

Method Action Return Code Formats Default
Format

Parame-
ters

GET Return all
styles

200 HTML, XML, JSON HTML

POST Create a new
style

201 with Location
header

SLD, XML, JSON See
notes below

name

PUT 405
DELETE 405 purge

Representations:

• HTML

• XML

• JSON

When POSTing or PUTing a style as SLD, the Content-type header should be set to
application/vnd.ogc.sld+xml. The name parameter specifies the name to be given to the
style. This option is most useful when POSTing a style in SLD format, and an appropriate name can be not
be inferred from the SLD itself.

/styles/<s>[.<format>]

390 Chapter 10. RESTful Configuration

GeoServer User Manual, Release 2.1-RC4

Method Action Return Code Formats Default Format
GET Return style s 200 SLD, HTML, XML, JSON HTML
POST 405
PUT Modify style s 200 SLD, XML, JSON See notes above
DELETE Delete style s 200

The purge parameter specifies whether the underlying SLD file for the style should be deleted on disk. It
is specified as a boolean value (true|false). When set to true the underlying file will be deleted.

Representations:

• SLD

• HTML

• XML

• JSON

Exceptions:

• GET for a style that does not exist -> 404

• PUT that changes name of style -> 403

• DELETE against style which is referenced by existing layers -> 403

10.2.11 Layers

A layer is a published resource (feature type or coverage).

Note: In GeoServer 1.x a layer can considered the equivalent of a feature type or a coverage. In GeoServer
2.x, the two will be separate entities, with the relationship from a feature type to a layer being one-to-many.

Operations

/layers[.<format>]

Method Action Return Code Formats Default Format
GET Return all layers 200 HTML, XML, JSON HTML
POST 405
PUT 405
DELETE 405

Representations:

• HTML

• XML

• JSON

/layers/<l>[.<format>]

Method Action Return Code Formats Default Format Parameters
GET Return layer l 200 HTML, XML, JSON HTML
POST 405
PUT Modify layer l 200 XML,JSON
DELETE Delete layer l 200 recurse

Representations:

10.2. REST Configuration API Reference 391

GeoServer User Manual, Release 2.1-RC4

• HTML

• XML

• JSON

Exceptions:

• GET for a layer that does not exist -> 404

• PUT that changes name of layer -> 403

• PUT that changes resource of layer -> 403

The recurse parameter is used to recursively delete all resources referenced by the specified layer. Allow-
able values for this parameter are “true” or “false”. The default value is “false”.

/layers/<l>/styles[.<format>]

Method Action Return Code Formats Default Format
GET Return all styles for layer l 200 SLD, HTML, XML, JSON HTML
POST Add a new style to layer l 201, with Location header XML, JSON
PUT 405
DELETE 405

10.2.12 Layer groups

A layer group is a grouping of layers and styles that can be accessed as a single layer in a WMS GetMap
request. A Layer group is often referred to as a “base map”.

Operations

/layergroups[.<format>]

Method Action Return Code Formats Default Format
GET Return all layer groups 200 HTML, XML, JSON HTML
POST Add a new layer group 201, with Location header XML,JSON
PUT 405
DELETE 405

Representations:

• HTML

• XML

• JSON

/layergroups/<lg>[.<format>]

Method Action Return Code Formats Default Format
GET Return layer group lg 200 HTML, XML, JSON HTML
POST 405
PUT Modify layer group lg 200 XML,JSON
DELETE Delete layer group lg 200

Representations:

• HTML

• XML

392 Chapter 10. RESTful Configuration

GeoServer User Manual, Release 2.1-RC4

• JSON

Exceptions:

• GET for a layer group that does not exist -> 404

• POST that specifies layer group with no layers -> 400

• PUT that changes name of layer group -> 403

10.2.13 Configuration reloading

Reloads the catalog and configuration from disk. This operation is used to reload GeoServer in cases where
an external tool has modified the on disk configuration. This operation will also force GeoServer to drop
any internal caches and reconnect to all data stores.

/reload

Method Action Return Code Formats Default Format
GET 405
POST Reloads the configuration from disk 200
PUT Reloads the configuration from disk 200
DELETE 405

10.3 REST Configuration Examples

This section contains a number of examples which illustrate various uses of the REST data configuration
api. The examples are grouped by environment/language.

10.3.1 cURL

The examples in this section use the cURL utility, which is a handy command line tool for executing HTTP
requests and transferring files. Though cURL is used the examples apply to any HTTP-capable tool or
library.

Adding a new workspace

The following creates a new workspace named “acme” with a POST request:

curl -u admin:geoserver -v -XPOST -H ’Content-type: text/xml’ \
-d ’<workspace><name>acme</name></workspace>’ \
http://localhost:8080/geoserver/rest/workspaces

The response should contain the following:

< HTTP/1.1 201 Created
< Date: Fri, 20 Feb 2009 01:56:28 GMT
< Location: http://localhost:8080/geoserver/rest/workspaces/acme
< Server: Noelios-Restlet-Engine/1.0.5
< Transfer-Encoding: chunked

Note the Location response header which specifies the location of the newly created workspace. The
following retrieves the new workspace as XML with a GET request:

10.3. REST Configuration Examples 393

http://curl.haxx.se/

GeoServer User Manual, Release 2.1-RC4

curl -XGET -H ’Accept: text/xml’ http://localhost:8080/geoserver/rest/workspaces/acme

The response should look like:

<workspace>
<name>acme</name>
<dataStores>
<atom:link xmlns:atom="http://www.w3.org/2005/Atom" rel="alternate" href="http://localhost:8080/geoserver/rest/workspaces/acme/datastores.xml" type="application/xml"/>

</dataStores>
<coverageStores>
<atom:link xmlns:atom="http://www.w3.org/2005/Atom" rel="alternate" href="http://localhost:8080/geoserver/rest/workspaces/acme/coveragestores.xml" type="application/xml"/>

</coverageStores>
</workspace>

Specifying the Accept header to relay the desired representation of the workspace can be tedious. The
following is an equivalent (yet less RESTful) request:

curl -XGET http://localhost:8080/geoserver/rest/workspaces/acme.xml

Uploading a Shapefile

In this example a new datastore will be created by uploading a Shapefile. The following uploads the zipped
shapefile roads.zip and creates a new datastore named roads:

curl -u admin:geoserver -XPUT -H ’Content-type: application/zip’ \
--data-binary @roads.zip \
http://localhost:8080/geoserver/rest/workspaces/acme/datastores/roads/file.shp

The following retrieves the created data store as XML:

curl -XGET http://localhost:8080/geoserver/rest/workspaces/acme/datastores/roads.xml

<dataStore>
<name>roads</name>
<workspace>
<name>acme</name>
<atom:link xmlns:atom="http://www.w3.org/2005/Atom" rel="alternate" href="http://localhost:8080/geoserver/rest/workspaces/acme.xml" type="application/xml"/>

</workspace>
<connectionParameters>
<namespace>http://acme</namespace>
<url>file:/Users/jdeolive/devel/geoserver/1.7.x/data/minimal/data/roads/roads.shp</url>

</connectionParameters>
<featureTypes>
<atom:link xmlns:atom="http://www.w3.org/2005/Atom" rel="alternate" href="http://localhost:8080/geoserver/rest/workspaces/acme/datastores/roads/featuretypes.xml" type="application/xml"/>

</featureTypes>
</dataStore>

By default when a shapefile is uploaded a feature type is automatically created. See Layers page for details
on how to control this behaviour. The following retrieves the created feature type as XML:

curl -XGET
http://localhost:8080/geoserver/rest/workspaces/acme/datastores/roads/featuretypes/roads.xml

394 Chapter 10. RESTful Configuration

GeoServer User Manual, Release 2.1-RC4

<featureType>
<name>roads</name>
<nativeName>roads</nativeName>
<namespace>
<name>acme</name>
<atom:link xmlns:atom="http://www.w3.org/2005/Atom" rel="alternate" href="http://localhost:8080/geoserver/rest/namespaces/acme.xml" type="application/xml"/>

</namespace>
...

</featureType>

Adding an existing Shapefile

In the previous example a Shapefile was uploaded directly by sending a zip file in the body of a request.
This example shows how to add a Shapefile that already exists on the server.

Consider a directory on the server /data/shapefiles/roads that contains the Shapefile roads.shp.
The following adds a new datastore for the Shapefile:

curl -u admin:geoserver -XPUT -H ’Content-type: text/plain’ \
-d ’file:///data/shapefiles/roads/roads.shp’ \
http://localhost:8080/geoserver/rest/workspaces/acme/datastores/roads/external.shp

Note the external.shp part of the request uri.

Adding a directory of existing Shapefiles

In the previous example a datastore was created for a single Shapefile that already existed on the server.
This example shows how to add a directory of Shapefiles.

Consider a directory on the server /data/shapefiles that contains a number of different Shapefiles. The
following adds a new datastore for all the Shapefiles in the directory:

curl -u admin:geoserver -XPUT -H ’Content-type: text/plain’ \
-d ’file:///data/shapefiles/roads’ \
"http://localhost:8080/geoserver/rest/workspaces/acme/datastores/roads/external.shp?configure=all"

Note the configure=all query string parameter.

Changing a feature type style

In the previous example a Shapefile was uploaded, and in the process a feature type was created. Whenever
a feature type is created an layer is implicitly created for it. The following retrieves the layer as XML:

curl -XGET http://localhost:8080/geoserver/rest/layers/acme:roads.xml

<layer>
<name>roads</name>
<path>/</path>
<type>VECTOR</type>
<defaultStyle>
<name>roads_style</name>
<atom:link xmlns:atom="http://www.w3.org/2005/Atom" rel="alternate" href="http://localhost:8080/geoserver/rest/styles/roads_style.xml" type="application/xml"/>

10.3. REST Configuration Examples 395

GeoServer User Manual, Release 2.1-RC4

</defaultStyle>
<styles>
<style>

<name>line</name>
<atom:link xmlns:atom="http://www.w3.org/2005/Atom" rel="alternate" href="http://localhost:8080/geoserver/rest/styles/line.xml" type="application/xml"/>

</style>
</styles>
<resource class="featureType">
<name>roads</name>
<atom:link xmlns:atom="http://www.w3.org/2005/Atom" rel="alternate" href="http://localhost:8080/geoserver/rest/workspaces/acme/datastores/roads/featuretypes/roads.xml" type="application/xml"/>

</resource>
<enabled>false</enabled>

</layer>

When the layer is created a default style named polygon is assigned to it. This style can viewed with a
WMS GetMap request (http://localhost:8080/geoserver/wms/reflect?layers=acme:roads)

In this example a new style will be created and assigned to the layer created in the previous example. The
following creates a new style named roads_style:

curl -u admin:geoserver -XPOST -H ’Content-type: text/xml’ \
-d ’<style><name>roads_style</name><filename>roads.sld</filename></style>’
http://localhost:8080/geoserver/rest/styles

Uploading the file roads.sld:

curl -u admin:geoserver -XPUT -H ’Content-type: application/vnd.ogc.sld+xml’ \
-d @roads.sld http://localhost:8080/geoserver/rest/styles/roads_style

The following applies the newly created style to the layer created in the previous example:

curl -u admin:geoserver -XPUT -H ’Content-type: text/xml’ \
-d ’<layer><defaultStyle><name>roads_style</name></defaultStyle></layer>’ \
http://localhost:8080/geoserver/rest/layers/acme:roads

The new style can be viewed with the same GetMap request (http://localhost:8080/geoserver/wms/reflect?layers=acme:roads)
as above.

Adding a PostGIS database

Note: This section assumes that a PostGIS database named nyc is present on the local system and is
accessible by the user bob.

In this example a PostGIS database named nyc will be added as a new data store. In preparation create the
database and import the nyc.sql file:

psql nyc < nyc.sql

The following represents the new data store:

<dataStore>
<name>nyc</name>
<connectionParameters>
<host>localhost</host>
<port>5432</port>
<database>nyc</database>

396 Chapter 10. RESTful Configuration

http://localhost:8080/geoserver/wms/reflect?layers=acme:roads
http://localhost:8080/geoserver/wms/reflect?layers=acme:roads

GeoServer User Manual, Release 2.1-RC4

<user>bob</user>
<dbtype>postgis</dbtype>

</connectionParameters>
</dataStore>

Save the above xml into a file named nycDataStore.xml. The following adds the new datastore:

curl -u admin:geoserver -XPOST -T nycDataStore.xml -H ’Content-type: text/xml’ \
http://localhost:8080/geoserver/rest/workspaces/acme/datastores

Adding a PostGIS table

In this example two tables from the PostGIS database created in the previous example will be added as
feature types. The following adds the table buildings as a new feature type:

curl -u admin:geoserver -XPOST -H ’Content-type: text/xml’ \
-d ’<featureType><name>buildings</name></featureType>’ \
http://localhost:8080/geoserver/rest/workspaces/acme/datastores/nyc/featuretypes

The following retrieves the created feature type:

curl -XGET http://localhost:8080/geoserver/rest/workspaces/acme/datastores/nyc/featuretypes/buildings.xml

This GetMap request (http://localhost:8080/geoserver/wms/reflect?layers=acme:buildings) shows the
rendered buildings layer.

The following adds the table parks as a new feature type:

curl -u admin:geoserver -XPOST -H ’Content-type: text/xml’ \
-d ’<featureType><name>parks</name></featureType>’ \
http://localhost:8080/geoserver/rest/workspaces/acme/datastores/nyc/featuretypes

This GetMap request (http://localhost:8080/geoserver/wms/reflect?layers=acme:parks) shows the ren-
dered parks layer.

Creating a layer group

In this example the layers added in previous examples will be used to create a layer group. First a few
styles need to be added. The following adds a style for the buildings layer:

curl -u admin:geoserver -XPUT -H ’Content-type: application/vnd.ogc.sld+xml’ -d @buildings.sld \
http://localhost:8080/geoserver/rest/styles/buildings_style

The following adds a style for the parks layer:

curl -u admin:geoserver -XPUT -H ’Content-type: application/vnd.ogc.sld+xml’ -d @parks.sld \
http://localhost:8080/geoserver/rest/styles/parks_style

The following represents the new layer group:

10.3. REST Configuration Examples 397

http://localhost:8080/geoserver/wms/reflect?layers=acme:buildings
http://localhost:8080/geoserver/wms/reflect?layers=acme:parks

GeoServer User Manual, Release 2.1-RC4

<layerGroup>
<name>nyc</name>
<layers>
<layer>roads</layer>
<layer>parks</layer>
<layer>buildings</layer>

</layers>
<styles>
<style>roads_style</style>
<style>parks</style>
<style>buildings_style</style>

</styles>
</layerGroup>

Save the following in a file named nycLayerGroup.xml. The following creates the new layer group:

curl -u admin:geoserver -XPOST -d @nycLayerGroup.xml -H ’Content-type: text/xml’ \
http://localhost:8080/geoserver/rest/layergroups

This GetMap request (http://localhost:8080/geoserver/wms/reflect?layers=nyc) shows the rendered layer
group.

10.3.2 PHP

The examples in this section use the server-side scripting language PHP , a popular language for dynamic
webpages. PHP has cURL functions , as well as XML functions , making it a convenient method for per-
forming batch processing through the Geoserver REST interface. The following scripts execute single re-
quests, but can be easily modified with looping structures to perform batch processing.

POST with PHP/cURL

The following script attempts to add a new workspace.

<?php
// Open log file
$logfh = fopen("GeoserverPHP.log", ’w’) or die("can’t open log file");

// Initiate cURL session
$service = "http://localhost:8080/geoserver/"; // replace with your URL
$request = "rest/workspaces"; // to add a new workspace
$url = $service . $request;
$ch = curl_init($url);

// Optional settings for debugging
curl_setopt($ch, CURLOPT_RETURNTRANSFER, true); //option to return string
curl_setopt($ch, CURLOPT_VERBOSE, true);
curl_setopt($ch, CURLOPT_STDERR, $logfh); // logs curl messages

//Required POST request settings
curl_setopt($ch, CURLOPT_POST, True);
$passwordStr = "admin:geoserver"; // replace with your username:password
curl_setopt($ch, CURLOPT_USERPWD, $passwordStr);

//POST data
curl_setopt($ch, CURLOPT_HTTPHEADER,

398 Chapter 10. RESTful Configuration

http://localhost:8080/geoserver/wms/reflect?layers=nyc
http://php.net/index.php/
http://php.net/manual/en/ref.curl.php/
http://www.php.net/manual/en/refs.xml.php/

GeoServer User Manual, Release 2.1-RC4

array("Content-type: application/xml"));
$xmlStr = "<workspace><name>test_ws</name></workspace>";
curl_setopt($ch, CURLOPT_POSTFIELDS, $xmlStr);

//POST return code
$successCode = 201;

$buffer = curl_exec($ch); // Execute the curl request

// Check for errors and process results
$info = curl_getinfo($ch);
if ($info[’http_code’] != $successCode) {

$msgStr = "# Unsuccessful cURL request to ";
$msgStr .= $url." [". $info[’http_code’]. "]\n";
fwrite($logfh, $msgStr);

} else {
$msgStr = "# Successful cURL request to ".$url."\n";
fwrite($logfh, $msgStr);

}
fwrite($logfh, $buffer."\n");

curl_close($ch); // free resources if curl handle will not be reused
fclose($logfh); // close logfile

?>

The logfile should look something like:

* About to connect() to www.example.com port 80 (#0)

* Trying 123.456.78.90... * connected

* Connected to www.example.com (123.456.78.90) port 80 (#0)

* Server auth using Basic with user ’admin’
> POST /geoserver/rest/workspaces HTTP/1.1
Authorization: Basic sDsdfjkLDFOIedlsdkfj
Host: www.example.com
Accept: */*
Content-type: application/xml
Content-Length: 43

< HTTP/1.1 201 Created
< Date: Fri, 21 May 2010 15:44:47 GMT
< Server: Apache-Coyote/1.1
< Location: http://www.example.com/geoserver/rest/workspaces/test_ws
< Content-Length: 0
< Content-Type: text/plain
<

* Connection #0 to host www.example.com left intact
Successful cURL request to http://www.example.com/geoserver/rest/workspaces

* Closing connection #0

If the cURL request fails, a code other than 201 will be returned. Here are some possible values:

10.3. REST Configuration Examples 399

GeoServer User Manual, Release 2.1-RC4

Code Meaning
0 Couldn’t resolve host; possibly a typo in host name
201 Successful POST
30x Redirect; possibly a typo in the URL
401 Invalid username or password
405 Method not Allowed: check request syntax
500 Geoserver is unable to process the request, e.g. the workspace already exists, the xml is

malformed, ...

For other codes see cURL Error Codes and HTTP Codes.

GET with PHP/cURL

The script above can be modified to perform a GET request to obtain the names of all workspaces by
replacing the code blocks for required settings, data and return code with the following:

<?php
// Required GET request settings
// curl_setopt($ch, CURLOPT_GET, True); // CURLOPT_GET is True by default

//GET data
curl_setopt($ch, CURLOPT_HTTPHEADER, array("Accept: application/xml"));

//GET return code
$successCode = 200;

?>

The logfile should now include lines like:

> GET /geoserver/rest/workspaces HTTP/1.1

< HTTP/1.1 200 OK

as well as some xml looking something like the example here.

DELETE with PHP/cURL

To delete the (empty) workspace we just created, the script is modified as follows:

<?php
$request = "rest/workspaces/test_ws"; // to delete this workspace

?>

<?php
//Required DELETE request settings
curl_setopt($ch, CURLOPT_CUSTOMREQUEST, "DELETE");
$passwordStr = "admin:geoserver"; // replace with your username:password
curl_setopt($ch, CURLOPT_USERPWD, $passwordStr);

//DELETE data
curl_setopt($ch, CURLOPT_HTTPHEADER,

array("Content-type: application/atom+xml"));

//DELETE return code

400 Chapter 10. RESTful Configuration

http://curl.haxx.se/libcurl/c/libcurl-errors.html
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

GeoServer User Manual, Release 2.1-RC4

$successCode = 200;
?>

The log file will include lines like:

> DELETE /geoserver/rest/workspaces/test_ws HTTP/1.1

< HTTP/1.1 200 OK

10.3.3 Python

We are looking for volunteers to flesh out this section with examples. But anyone looking to do python
scripting of the GeoServer REST config API should use gsconfig.py. It is quite capable, and used in produc-
tion as part of GeoNode, so examples can be found in that codebase. It just currently lacks documentation
and examples.

10.3. REST Configuration Examples 401

https://github.com/dwins/gsconfig.py/wiki
http://geonode.org

GeoServer User Manual, Release 2.1-RC4

402 Chapter 10. RESTful Configuration

CHAPTER 11

Advanced GeoServer Configuration

GeoServer provides a variety of options to customize your service for different situations. While none of the
configuration options discussed in this section are required for a basic GeoServer installation, they allow
you to adapt your GeoServer to your own needs, beyond the options exposed in OGC standard services.

11.1 Coordinate Reference System Handling

This section describes how coordinate reference systems (CRS) are handled in GeoServer, as well as what
can be done to extend GeoServer’s CRS handling abilities.

11.1.1 Coordinate Reference System Configuration

When adding data, GeoServer tries to inspect data headers looking for an EPSG code:

• If the data has a CRS with an explicit EPSG code and the full CRS definition behind the code matches
the one in GeoServer, the CRS will be already set for the data.

• If the data has a CRS but no EPSG code, you can use the Find option on the Layers page to make
GeoServer perform a lookup operation where the data CRS is compared against every other known
CRS. If this succeeds, an EPSG code will be selected. The common case for a CRS that has no EPSG
code is shapefiles whose .PRJ file contains a valid WKT string without the EPSG identifiers (as these
are optional).

If an EPSG code cannot be found, then either the data has no CRS or it is unknown to GeoServer. In this
case, there are a few options:

• Force the declared CRS, ignoring the native one. This is the best solution if the native CRS is known
to be wrong.

• Reproject from the native to the declared CRS. This is the best solution if the native CRS is correct, but
cannot be matched to an EPSG number. (An alternative is to add a custom EPSG code that matches
exactly the native SRS. See the section on Custom CRS Definitions for more information.)

If your data has no native CRS information, the only option is to specify/force an EPSG code.

403

GeoServer User Manual, Release 2.1-RC4

11.1.2 Custom CRS Definitions

Add a custom CRS

This example shows how to add a custom projection in GeoServer.

1. The projection parameters need to be provided as a WKT (well known text) definition. The code
sample below is just an example:

PROJCS["NAD83 / Austin",
GEOGCS["NAD83",

DATUM["North_American_Datum_1983",
SPHEROID["GRS 1980", 6378137.0, 298.257222101],
TOWGS84[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]],

PRIMEM["Greenwich", 0.0],
UNIT["degree", 0.017453292519943295],
AXIS["Lon", EAST],
AXIS["Lat", NORTH]],

PROJECTION["Lambert_Conformal_Conic_2SP"],
PARAMETER["central_meridian", -100.333333333333],
PARAMETER["latitude_of_origin", 29.6666666666667],
PARAMETER["standard_parallel_1", 31.883333333333297],
PARAMETER["false_easting", 2296583.333333],
PARAMETER["false_northing", 9842500.0],
PARAMETER["standard_parallel_2", 30.1166666666667],
UNIT["m", 1.0],
AXIS["x", EAST],
AXIS["y", NORTH],
AUTHORITY["EPSG","100002"]]

Note: This code sample has been formatted for readability. The information will need to be provided
on a single line instead, or with backslash characters at the end of every line (except the last one).

2. Go into the user_projections directory inside your data directory, and open the
epsg.properties file. If this file doesn’t exist, you can create it.

3. Insert the code WKT for the projection at the end of the file (on a single line or with backslash charac-
ters):

100002=PROJCS["NAD83 / Austin", \
GEOGCS["NAD83", \

DATUM["North_American_Datum_1983", \
SPHEROID["GRS 1980", 6378137.0, 298.257222101], \
TOWGS84[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]], \

PRIMEM["Greenwich", 0.0], \
UNIT["degree", 0.017453292519943295], \
AXIS["Lon", EAST], \
AXIS["Lat", NORTH]], \

PROJECTION["Lambert_Conformal_Conic_2SP"], \
PARAMETER["central_meridian", -100.333333333333], \
PARAMETER["latitude_of_origin", 29.6666666666667], \
PARAMETER["standard_parallel_1", 31.883333333333297], \
PARAMETER["false_easting", 2296583.333333], \
PARAMETER["false_northing", 9842500.0], \
PARAMETER["standard_parallel_2", 30.1166666666667], \
UNIT["m", 1.0], \
AXIS["x", EAST], \

404 Chapter 11. Advanced GeoServer Configuration

GeoServer User Manual, Release 2.1-RC4

AXIS["y", NORTH], \
AUTHORITY["EPSG","100002"]]

Note: Note the number that precedes the WKT. This will determine the EPSG code. So in this example, the
EPSG code is 100002.

1. Save the file.

2. Restart GeoServer.

3. Verify that the CRS has been properly parsed by navigating to the SRS page in the Web Administration
Interface.

4. If the projection wasn’t listed, examine the logs for any errors.

Override an official EPSG code

In some situations it is necessary to override an official EPSG code with a custom definition. A common
case is the need to change the TOWGS84 parameters in order to get better reprojection accuracy in specific
areas.

The GeoServer referencing subsystem checks the existence of another property file,
epsg_overrides.properties, whose format is the same as epsg.properties. Any definition
contained in epsg_overrides.properties will override the EPSG code, while definitions stored in
epsg.proeprties can only add to the database.

Special care must be taken when overriding the Datum parameters, in particular the TOWGS84 param-
eters. To make sure the override parameters are actually used the code of the Datum must be removed,
otherwise the referencing subsystem will keep on reading the official database in search of the best Datum
shift method (grid, 7 or 5 parameters transformation, plain affine transform).

For example, if you need to override the official TOWGS84 parameters of EPSG:23031:

PROJCS["ED50 / UTM zone 31N",
GEOGCS["ED50",
DATUM["European Datum 1950",

SPHEROID["International 1924", 6378388.0, 297.0, AUTHORITY["EPSG","7022"]],
TOWGS84[-157.89, -17.16, -78.41, 2.118, 2.697, -1.434, -1.1097046576093785],
AUTHORITY["EPSG","6230"]],

PRIMEM["Greenwich", 0.0, AUTHORITY["EPSG","8901"]],
UNIT["degree", 0.017453292519943295],
AXIS["Geodetic longitude", EAST],
AXIS["Geodetic latitude", NORTH],
AUTHORITY["EPSG","4230"]],

PROJECTION["Transverse_Mercator"],
PARAMETER["central_meridian", 3.0],
PARAMETER["latitude_of_origin", 0.0],
PARAMETER["scale_factor", 0.9996],
PARAMETER["false_easting", 500000.0],
PARAMETER["false_northing", 0.0],
UNIT["m", 1.0],
AXIS["Easting", EAST],
AXIS["Northing", NORTH],
AUTHORITY["EPSG","23031"]]

You should write the following (in a single line, here it’s reported formatted over multiple lines for read-
ability):

11.1. Coordinate Reference System Handling 405

GeoServer User Manual, Release 2.1-RC4

23031=
PROJCS["ED50 / UTM zone 31N",
GEOGCS["ED50",

DATUM["European Datum 1950",
SPHEROID["International 1924", 6378388.0, 297.0, AUTHORITY["EPSG","7022"]],
TOWGS84[-136.65549, -141.4658, -167.29848, 2.093088, 0.001405, 0.107709, 11.54611],
AUTHORITY["EPSG","6230"]],

PRIMEM["Greenwich", 0.0, AUTHORITY["EPSG","8901"]],
UNIT["degree", 0.017453292519943295],
AXIS["Geodetic longitude", EAST],
AXIS["Geodetic latitude", NORTH]],

PROJECTION["Transverse_Mercator"],
PARAMETER["central_meridian", 3.0],
PARAMETER["latitude_of_origin", 0.0],
PARAMETER["scale_factor", 0.9996],
PARAMETER["false_easting", 500000.0],
PARAMETER["false_northing", 0.0],
UNIT["m", 1.0],
AXIS["Easting", EAST],
AXIS["Northing", NORTH],
AUTHORITY["EPSG","23031"]]

The definition has been changed in two places, the TOWGS84 paramerers, and the Datum code,
AUTHORITY["EPSG","4230"], has been removed.

11.1.3 Manually editing the CRS database

Warning: These instructions are very advanced, and are here mainly for the curious who want to know
details about the EPSG database subsystem.

To define a custom projection, edit the EPSG.sql file, which is used to create the cached EPSG database.

1. Navigate to the WEB-INF/lib directory

2. Uncompress the gt2-epsg-h.jar file. On Linux, the command is:

jar xvf gt2-epsg-h.jar

3. Open org/geotools/referencing/factory/epsg/EPSG.sql with a text editor. To add a cus-
tom projection, these entries are essential:

(a) An entry in the EPSG_COORDINATEREFERENCESYSTEM table:

(41111,’WGC 84 / WRF Lambert’,1324,’projected’,4400,NULL,4326,20000,NULL,NULL,’US Nat. scale mapping.’,’Entered by Alex Petkov’,’Missoula Firelab WRF’,’WRF’,’2000-10-19’,’’,1,0),

where:

• 1324 is the EPSG_AREA code that describes the area covered by my projection

• 4400 is the EPSG_COORDINATESYSTEM code for my projection

• 20000 is the EPSG_COORDOPERATIONPARAMVALUE key for the array that contains my
projection parameters

(b) An entry in the EPSG_COORDOPERATIONPARAMVALUE table:

406 Chapter 11. Advanced GeoServer Configuration

GeoServer User Manual, Release 2.1-RC4

(20000,9802,8821,40,’’,9102), //latitude of origin
(20000,9802,8822,-97.0,’’,9102), //central meridian
(20000,9802,8823,33,’’,9110), //st parallel 1
(20000,9802,8824,45,’’,9110), //st parallel 2
(20000,9802,8826,0.0,’’,9001), //false easting
(20000,9802,8827,0.0,’’,9001) //false northing

where:

• 9802 is the EPSG_COORDOPERATIONMETHOD key for the Lambert Conic Conformal
(2SP) formula

(c) An entry in the EPSG_COORDOPERATION table:

(20000,’WRF Lambert’,’conversion’,NULL,NULL,’‘,NULL,1324,’Used for weather forecast-
ing.’,0.0,9802,NULL,NULL,’Used with the WRF-Chem model for weather forecasting’,’Firelab
in Missoula, MT’,’EPSG’,‘2005-11-23’,‘2005.01’,1,0)

where:

• 1324 is the EPSG_AREA code that describes the area covered by my projection

• 9802 is the EPSG_COORDOPERATIONMETHOD key for the Lambert Conic Conformal
(2SP) formula

Note: Observe the commas. If you enter a line that is at the end of an INSERT statement, the comma is
omitted (make sure the row before that has a comma at the end). Otherwise, add a comma at the end of
your entry.

1. After all edits, save the file and exit.

2. Compress the gt2-epsg-h.jar file. On Linux, the command is:

jar -Mcvf gt2-epsg-h.jar META-INF org

3. Remove the cached copy of the EPSG database, so that can be recreated. On Linux, the command is:

rm -rf /tmp/Geotools/Databases/HSQL

4. Restart GeoServer.

The new projection will be successfully parsed. Verify that the CRS has been properly parsed by navigating
to the SRS page in the Web Administration Interface.

11.2 Advanced log configuration

GeoServer logging subsystem is based on Java logging, which is in turn by default redirected to Log4J and
controlled by the current logging configuration set in the Global Settings.

The standard configuration can be overridden in a number of ways to create custom logging profiles or to
force GeoServer to use another logging library altogheter.

11.2.1 Custom logging profiles

Anyone can write a new logging profile by adding a Log4J configuration file to the list of files already
available in the $GEOSERVER_DATA_DIR/logs folder. The name of the file will become the configuration
name displayed in the admin console and the contents will drive the specific behavior of the logger.

11.2. Advanced log configuration 407

GeoServer User Manual, Release 2.1-RC4

Here is an example, taken from the GEOTOOLS_DEVELOPER_LOGGING configuration, which enables the
geotools log messages to appear in the logs:

log4j.rootLogger=WARN, geoserverlogfile, stdout

log4j.appender.stdout=org.apache.log4j.ConsoleAppender
log4j.appender.stdout.layout=org.apache.log4j.PatternLayout
log4j.appender.stdout.layout.ConversionPattern=%d{dd MMM HH:mm:ss} %p [%c] - %m%n

log4j.category.log4j=FATAL

log4j.appender.geoserverlogfile=org.apache.log4j.RollingFileAppender
Keep three backup files.
log4j.appender.geoserverlogfile.MaxBackupIndex=3
Pattern to output: date priority [category] - message
log4j.appender.geoserverlogfile.layout=org.apache.log4j.PatternLayout
log4j.appender.geoserverlogfile.layout.ConversionPattern=%d %p [%c] - %m%n

log4j.category.org.geotools=TRACE
Some more geotools loggers you may be interest in tweaking
log4j.category.org.geotools.factory=TRACE
log4j.category.org.geotools.renderer=DEBUG
log4j.category.org.geotools.data=TRACE
log4j.category.org.geotools.feature=TRACE
log4j.category.org.geotools.filter=TRACE
log4j.category.org.geotools.factory=TRACE

log4j.category.org.geoserver=INFO
log4j.category.org.vfny.geoserver=INFO

log4j.category.org.springframework=WARN

Any custom configuration can be setup to enable specific packages to emit logs at the desired logging level.
There are however a few rules to follow:

• the configuration should always include a geoserverlogfile appender that GeoServer will con-
figure to work against the location configured in the Global Settings

• a logger writing to the standard output should be called stdout and again GeoServer will en-
able/disable it according to the configuration set in the Global Settings

• it is advisable, but not require, to setup log rolling for the geoserverlogfile appender

11.2.2 Overriding the log location setup in the GeoServer configuration

When setting up a cluster of GeoServer machines it is common to share a single data directory among all
the cluster nodes. There is however a gotcha, all nodes would end up writing the logs in the same file,
which would cause various kinds of troubles depending on the operating system file locking rules (a single
server might be able to write, or all togheter in an uncontrolled manner resulting in an unreadable log file).

In this case it is convenient to set a separate log location for each GeoServer node by setting the following
parameter among the JVM system variables, enviroment variables, or servlet context parameters:

GEOSERVER_LOG_LOCATION=<the location of the file>

A common choice could be to use the machine name as a distinction, setting values such as
logs/geoserver_node1.log, logs/geoserver_node2.log and so on: in this case all the log files

408 Chapter 11. Advanced GeoServer Configuration

GeoServer User Manual, Release 2.1-RC4

would still be contained in the data directory and properly rotated, but each server would have its own
separate log file to write on.

11.2.3 Forcing GeoServer to relinquish Log4J control

GeoServer internally overrides the Log4J configuration by using the current logging configuration as a
template and appling the log location and standard output settings configured by the administrator.

If you wish GeoServer not to override the normal Log4J behavior you can set the following parameter
among the JVM system variables, enviroment variables, or servlet context parameters:

RELINQUISH_LOG4J_CONTROL=true

11.2.4 Forcing GeoServer to use an alternate logging redirection

GeoServer uses the GeoTools logging framework, which in turn is based on Java Logging, but allowing to
redirect all message to an alternate framework of users choice.

By default GeoServer setups a Log4J redirection, but it is possible to configure GeoServer to use plain
Java Logging or Commons Logging instead (support for other loggers is also possible by using some extra
programming).

If you wish to force GeoServer to use a different logging mechanism set the following parameters among
the JVM system variables, enviroment variables, or servlet context parameters:

GT2_LOGGING_REDIRECTION=[JavaLogging,CommonsLogging,Log4J]
RELINQUISH_LOG4J_CONTROL=true

As noted in the example you’ll also have to demand that GeoServer does not exert control over the Log4J
configuration

11.3 WMS Decorations

WMS Decorations provide a framework for visually annotating images from WMS with absolute, rather
than spatial, positioning. Examples of decorations include compasses, legends, and watermarks.

11.3.1 Configuration

To use decorations in a GetMap request, the administrator must first configure a decoration layout. These
layouts are stored in a subdirectory called layouts in the GeoServer Data Directory as XML files, one file
per layout. Each layout file must have the extension .xml. Once a layout foo.xml is defined, users can
request it by adding &format_options=layout:foo to the request parameters.

Layout files follow a very simple XML structure; a root node named layout containing any number of
decoration elements. Each decoration element has several attributes:

11.3. WMS Decorations 409

GeoServer User Manual, Release 2.1-RC4

At-
tribute

Meaning

type the type of decoration to use (see Decoration Types)
affinity the region of the map image to which the decoration is anchored
offset how far from the anchor point the decoration is drawn
size the maximum size to render the decoration. Note that some decorations may dynamically

resize themselves.

Each decoration element may also contain an arbitrary number of option elements providing a parameter
name and value:

<option name="foo" value="bar"/>

Option interpretation depends on the type of decoration in use.

11.3.2 Decoration Types

While GeoServer allows for decorations to be added via extension, there is a core set of decorations included
in the default installation. These decorations include:

The image decoration (type="image") overlays a static image file onto the document. If height and width
are specified, the image will be scaled to fit, otherwise the image is displayed at full size.

Option Name Meaning
url provides the URL or file path to the image to draw (relative to the GeoServer data directory)
opacity a number from 0 to 100 indicating how opaque the image should be.

The scaleratio decoration (type="scaleratio") overlays a text description of the map’s scale ratio onto
the document.

Option Name Meaning
bgcolor the background color for the text. supports RGB or RGBA colors specified as hex values.
fgcolor the color for the text and border. follows the color specification from bgcolor.

The scaleline decoration (type="scaleline") overlays a graphic showing the scale of the map in world
units.

Option Name Meaning
bgcolor the background color, as used in scaleratio
fgcolor the foreground color, as used in scaleratio
fontsize the size of the font to use

The legend decoration (type="legend") overlays a graphic containing legends for the layers in the map.

11.3.3 Example

A layout configuration file might look like this:

<layout>
<decoration type="image" affinity="bottom,right" offset="6,6" size="80,31">

<option name="url" value="pbGS_80x31glow.png"/>
</decoration>

<decoration type="scaleline" affinity="bottom,left" offset="36,6"/>

<decoration type="legend" affinity="top,left" offset="6,6" size="auto"/>
</layout>

410 Chapter 11. Advanced GeoServer Configuration

GeoServer User Manual, Release 2.1-RC4

Used against the states layer from the default GeoServer data, this layout produces an image like the fol-
lowing.

Figure 11.1: The default states layer, drawn with the decoration layout above.

11.3. WMS Decorations 411

GeoServer User Manual, Release 2.1-RC4

412 Chapter 11. Advanced GeoServer Configuration

CHAPTER 12

Security

This section details the security subsystem in GeoServer. The system is based on Spring Security.

12.1 Accessing secured resources

The Web Administration Interface is secured by form-based authentication, with an optional “remember-me”
cookie setting. The OGC services are secured using HTTP BASIC authentication, provided on each call.

The form-based authentication is based on browser session, so if the same browser is used to access services
as well, the authentication will be remembered.

Here is the process for accessing a secured resource:

1. If no authentication is provided, anonymous login will be assumed.

2. If any authentication information is included, it will be used.

• In the case of form-based information, a session will be created to store it.

• In the case of HTTP BASIC authentication, session integration will be performed only if a session
is already available (to avoid overhead).

3. If the resource being accessed is secured and the current user is anonymous, authentication will be
requested either using HTTP BASIC authentication (for services) or by using form based login (for
the web adminsitration interface).

4. If the resource accessed is secured and the currently authenticated user lacks sufficient access rights,
an HTTP 404 error will be returned.

12.2 Users and roles

Security in GeoServer is a role-based system. Roles are created to serve particular functions (Examples:
access WFS, administer UI, read certain layers), and users are linked to those roles.

413

http://static.springsource.org/spring-security/site/

GeoServer User Manual, Release 2.1-RC4

12.2.1 Setting users and roles

Linking users and roles is done via the file users.properties. This file is in the GeoServer data directory
in the security directory. Be default, this file contains one line:

admin=geoserver,ROLE_ADMINISTRATOR

There is only one predefined role: ROLE_ADMINISTRATOR. This role provides full access to all systems
inside GeoServer. This file links the user admin (with password geoserver) to this role.

Note: It should go without saying that if you are using GeoServer in a production environment, this default
behavior should be immediately changed.

Other users and roles can be created by adding to the users.properties file. The syntax is:

user=password,role[,role2,...]

where:

• user is the user name

• password is the password associated with that user

• role[,role2,...] is the name of the role(s) associated with this user

Although the default administrator role is ROLE_ADMINISTRATOR, the naming convention is not manda-
tory. Multiple users can be linked with the same role. Users and passwords are case-sensitive.

12.3 Service-level security

Note: Service-level security and Layer-level security cannot be combined. For example, it is not possible to
specify access to a specific OGC service on one specific layer.

GeoServer allows access to be determined on a service level (WFS, WMS).

Access to services is linked to roles. (See also Users and roles.) Services and roles are linked in a file called
services.properties, which is located in the security directory in your GeoServer data directory.

12.3.1 Syntax

The syntax for setting security is as follows. (Parameters in brackets are optional.):

service[.method]=role[,role2,...]

where:

• service can be wfs, wms, or wcs

• method can be any method supported by the service. (Ex: GetFeature for WFS, GetMap for WMS)

• role[,role2,...] is the name(s) of predefined roles.

Note: Make sure that your role is linked to a user, unless you want to deny access to everyone. Set this in
the users.properties file.

414 Chapter 12. Security

GeoServer User Manual, Release 2.1-RC4

12.3.2 Examples

By default, no service-level security is set. Two examples are given in the service.properties file by
default, commented out:

wfs.GetFeature=ROLE_WFS_READ
wfs.Transaction=ROLE_WFS_WRITE

The first line will link access to the WFS GetFeature method to the role ROLE_WFS_READ. The second line
will link access to the WFS Transactions to the role ROLE_WFS_WRITE.

12.4 Layer-level security

Note: Layer-level security and Service-level security cannot be combined. For example, it is not possible to
specify access to a specific OGC service on one specific layer.

GeoServer allows access to be determined on a per-layer basis.

Access to layers are linked to roles. (See also Users and roles.) Layers and roles are linked in a file called
layers.properties, which is located in the security directory in your GeoServer data directory.

12.4.1 Syntax

The syntax for setting security is as follows. (Parameters in brackets [] are optional):

namespace.layer.permission=role[,role2,...]

where:

• namespace is the name of the namespace. The wildcard * is used to indicate all namespaces.

• layer is the name of a featuretype or coverage. The wildcard * is used to indicate all layers.

• permission is the type of access permission (r for read access, w for write access).

• role[,role2,...] is the name(s) of predefined roles. The wildcard * is used to indicate the permission is
applied to all users, including anonymous users.

Starting with GeoServer 1.7.7, if a namespace or layer name is supposed to contain dots they can be escaped
using \\. For example, if a rule must refere layer.with.dots the following syntax can be used:

topp.layer\\.with\\.dots.r=ROLE1,ROLE2,...

Each entry must have a unique combination of namespace, layer, and permission values. If a permission at
the global level is not specified, global permissions are assumed to allow read/write access. If a permission
for a namespace is not specified, it inherits permissions from the global specification. If a permission for a
layer is not specified, it inherits permissions from its namespace specification. If a user belongs to multiple
roles, the least restrictive permission they inherit will apply.

The layers.properties file may contain a further directive that specifies the way in which GeoServer
will advertise secured layers and behave when a secured layer is accessed without the necessary privileges.
The line is:

mode=option

12.4. Layer-level security 415

GeoServer User Manual, Release 2.1-RC4

where option can be one of three values:

Option Description
hide
(default)

Hides layers that the user does not have read access to, and behaves as if a layer is read only
if the user does not have write permissions. The capabilities documents will not contain the
layers the current user cannot access. This is the highest security mode. Because of this, it
can sometimes not work very well with clients such as uDig or Google Earth.

challengeAllows free access to metadata, but any attempt at accessing actual data is met by a HTTP
401 code (which forces most clients to show an authentication dialog). The capabilities
documents contain the full list of layers. DescribeFeatureType and DescribeCoverage work
fine. This mode works fine with clients such as uDig or Google Earth.

mixed Hides the layers the user cannot read from the capabilities documents, but triggers
authentication for any other attempt to access the data or the metadata. This option is useful
if you don’t want the world to see the existence of some of your data, but you still want
selected people to whom you give direct data access links to get the data after
authentication.

12.4.2 Examples

Protecting a single namespace and a single layer

The following entries demonstrate configuring GeoServer so that it is primarily a read-only server:

..r=*
..w=NO_ONE
private.*.r=TRUSTED_ROLE
private.*.w=TRUSTED_ROLE
topp.congress_district.w=STATE_LEGISLATORS

In this example, here is the map of roles to permissions:

Role private.* topp.* topp.congress_district (all other namespaces)
NO_ONE (none) w (none) w
TRUSTED_ROLE r/w r r r
STATE_LEGISLATURES (none) r r/w r
(All other users) r r r r

Locking down GeoServer

The following entries demonstrate configuring GeoServer so that it is locked down:

..r=TRUSTED_ROLE

..w=TRUSTED_ROLE
topp.*.r=*
army.*.r=MILITARY_ROLE,TRUSTED_ROLE
army.*.w=MILITARY_ROLE,TRUSTED_ROLE

In this example, here is the map of roles to permissions:

Role topp.* army.* (All other namespaces)
TRUSTED_ROLE r/w r/w r/w
MILITARY_ROLE r r/w (none)
(All other users) r (none) (none)

416 Chapter 12. Security

GeoServer User Manual, Release 2.1-RC4

A more complex situation

The following entries demonstrate configuring GeoServer with global-, namepace-, and layer-level permis-
sions:

..r=TRUSTED_ROLE

..w=NO_ONE
topp.*.r=*
topp.states.r=USA_CITIZEN_ROLE,LAND_MANAGER_ROLE,TRUSTED_ROLE
topp.states.w=NO_ONE
topp.poly_landmarks.w=LAND_MANAGER_ROLE
topp.military_bases.r=MILITARY_ROLE
topp.military_bases.w=MILITARY_ROLE

In this example, here is the map of roles to permissions:

Role topp.statestopp.poly_landmarkstopp.military_basestopp.(all other
layers)

(All other
namespaces)

NO_ONE w r (none) w w
TRUSTED_ROLE r r (none) r r
MILITARY_ROLE (none) r r/w r (none)
USA_CITIZEN_ROLEr r (none) r (none)
LAND_MANAGER_ROLEr r/w (none) r (none)
(All other users) (none) r (none) r (none)

Note: The entry topp.states.w=NO_ONE is not needed, because this permission would be inherited
from the global level, i.e. the line *.*.w=NO_ONE.

Invalid configuration file

The following set of entries would not be valid because the namespace, layer, and permission combinations
of the entries are not unique:

topp.state.rw=ROLE1
topp.state.rw=ROLE2,ROLE3

12.5 REST Security

Note: RESTful security configuration is available in GeoServer versions greater than 2.0.1.

In addition to providing the ability to secure OWS style services GeoServer also allows for the securing of
RESTful services.

As with layer and service security, RESTful security configuration is based on Users and roles. Mappings
from request uri to role are defined in a file named rest.properties located in the security directory
of the GeoServer data directory.

12.5.1 Syntax

The following is the syntax for definiing access control rules for RESTful services (parameters in brackets []
are optional):

12.5. REST Security 417

GeoServer User Manual, Release 2.1-RC4

uriPattern;method[,method,...]=role[,role,...]

where:

• uriPattern is the ant pattern that matches a set of request uri’s..

• method is an HTTP request method, one of GET, POST, PUT, POST, DELETE, or HEAD

• role is the name of a predefined role. The wildcard ‘* is used to indicate the permission is applied to
all users, including anonymous users.

A few things to note:

• uri patterns should account for the first component of the rest path, usually rest or api

• method and role lists should not contain any spaces

Ant patterns

Ant patterns are a commonly used syntax for pattern matching directory and file paths. The examples section
contains some basic examples. The apache ant user manual contains more sophisticated cases.

12.5.2 Examples

Most of the examples in this section are specific to the rest configuration extension but any RESTful GeoServer
service can be configured in the same manner.

Allowing only autenticated access to services

The most secure of configurations is one that forces any request to be authenticated. The following will lock
down access to all requests:

/**;GET,POST,PUT,DELETE=ROLE_ADMINISTRATOR

A slightly less restricting configuration locks down access to operations under the path /rest, but will
allow anonymous access to requests that fall under other paths (for example /api):

/rest/**;GET,POST,PUT,DELETE=ROLE_ADMINISTRATOR

The following configuration is like the previous except it grants access to a specific role rather than the
administrator:

/**;GET,POST,PUT,DELETE=ROLE_TRUSTED

Where ROLE_TRUSTED is a role defined in users.properties.

Providing anonymous read-only access

The following configuration allows anonymous access when the GET (read) method is used but forces
authentication for a POST, PUT, or DELETE (write):

/**;GET=IS_AUTHENTICATED_ANONYMOUSLY
/**;POST,PUT,DELETE=TRUSTED_ROLE

418 Chapter 12. Security

http://ant.apache.org/manual/dirtasks.html

GeoServer User Manual, Release 2.1-RC4

Securing a specific resource

The following configuration forces authentication for access to a particular resource (in this case a feature
type):

/rest/**/states*;GET=TRUSTED_ROLE
/rest/**;POST,PUT,DELETE=TRUSTED_ROLE

The following secures access to a set of resources (in this case all data stores):

/rest/**/datastores/*;GET=TRUSTED_ROLE
/rest/**/datastores/*.*;GET=TRUSTED_ROLE
/rest/**;POST,PUT,DELETE=TRUSTED_ROLE

12.6 Disabling security

If you are using an external security subsystem, you may want to disable the built-in security to prevent
conflicts.

Warning: Beware! If security is disabled, you’ll have to make sure the external one locks down the
administration interface, otherwise it will be completely unlocked!

To disable GeoServer security, first shut down GeoServer, open the web.xml file (located inside the
WEB-INF directory) and comment out the “Spring Security Filter Chain Proxy” filter definition parame-
ters. These two pieces of code should look something like this:

<filter>
<filter-name>Spring Security Filter Chain Proxy</filter-name>
<filter-class>org.springframework.security.util.FilterToBeanProxy</filter-class>
<init-param>

<param-name>targetClass</param-name>
<param-value>org.springframework.security.util.FilterChainProxy</param-value>

</init-param>
</filter>

<filter-mapping>
<filter-name>Spring Security Chain Proxy</filter-name>
<url-pattern>/*</url-pattern>

</filter-mapping>

Comment these sections out. When GeoServer is restarted, the internal security subsystem will be com-
pletely disabled.

12.6. Disabling security 419

GeoServer User Manual, Release 2.1-RC4

420 Chapter 12. Security

CHAPTER 13

Running in a Production Environment

GeoServer is geared towards many different uses, from a simple test server to the enterprise-level data
server. While many optimizations for GeoServer are set by default, here are some extra considerations to
keep in mind when running GeoServer in a production environment.

13.1 Java Considerations

13.1.1 Use Oracle JRE

Note: As of version 2.0, a Java Runtime Environment (JRE) is sufficient to run GeoServer. GeoServer no
longer requires a Java Development Kit (JDK).

GeoServer’s speed depends a lot on the chosen Java Runtime Environment (JRE). For best performance, use
Oracle JRE 6 (also known as JRE 1.6). If this is not possible, use Oracle JRE 5 (also known as JRE 1.5). JREs
other than those released by Oracle may work correctly, but are generally not tested or supported. Users
report GeoServer to be working with OpenJDK, but expect reductions in 2D rendering performance.

13.1.2 Install native JAI and JAI Image I/O extensions

The Java Advanced Imaging API (JAI) is an advanced image manipulation library built by Oracle.
GeoServer requires JAI to work with coverages and leverages it for WMS output generation. By default,
GeoServer ships with the pure Java version of JAI, but for best performance, install the native JAI version
in your JDK/JRE.

In particular, installing the native JAI is important for all raster processing, which is used heavily in both
WMS and WCS to rescale, cut and reproject rasters. Installing the native JAI is also important for all raster
reading and writing, which affects both WMS and WCS. Finally, native JAI is very useful even if there
is no raster data involved, as WMS output encoding requires writing PNG/GIF/JPEG images, which are
themselves rasters.

Native extensions are available for Windows, Linux and Solaris (32 and 64 bit systems). They are, however,
not available for OS X.

Note: These installers are limited to allow adding native extensions to just one version of the JDK/JRE on
your system. If native extensions are needed on multiple versions, manually unpacking the extensions will
be necessary. See the section on Installing native JAI manually.

421

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://java.sun.com/javase/technologies/desktop/media/

GeoServer User Manual, Release 2.1-RC4

Note: These installers are also only able to apply the extensions to the currently used JDK/JRE. If native
extensions are needed on a different JDK/JRE than that which is currently used, it will be necessary to
uninstall the current one first, then run the setup program against the remaining JDK/JRE.

Installing native JAI on Windows

1. Go to the JAI download page and download the Windows installer for version 1.1.3. At the time of
writing only the 32 bit version of the installer is available, so if you are using a JDK, you will want to
download jai-1_1_3-lib-windows-i586-jdk.exe, and if you are using a JRE, you will want to download
jai-1_1_3-lib-windows-i586-jre.exe.

2. Run the installer and point it to the JDK/JRE install that GeoServer will use to run.

3. Go to the JAI Image I/O download page and download the Windows installer for version 1.1. At
the time of writing only the 32 bit version of the installer is available, so if you are using a JDK, you
will want to download jai_imageio-1_1-lib-windows-i586-jdk.exe, and if you are using a JRE, you will
want to download jai_imageio-1_1-lib-windows-i586-jre.exe

4. Run the installer and point it to the JDK/JRE install that GeoServer will use to run.

Installing native JAI on Linux

1. Go to the JAI download page and download the Linux installer for version 1.1.3, choosing the appro-
priate architecture:

• i586 for the 32 bit systems

• amd64 for the 64 bit ones (even if using Intel processors)

2. Copy the file into the directory containing the JDK/JRE and then run it. For example, on an Ubuntu
32 bit system:

$ sudo cp jai-1_1_3-lib-linux-i586-jdk.bin /usr/lib/jvm/java-6-sun
$ cd /usr/lib/jvm/java-6-sun
$ sudo sh jai-1_1_3-lib-linux-i586-jdk.bin
accept license
$ sudo rm jai-1_1_3-lib-linux-i586-jdk.bin

3. Go to the JAI Image I/O download page and download the Linux installer for version 1.1, choosing
the appropriate architecture:

• i586 for the 32 bit systems

• amd64 for the 64 bit ones (even if using Intel processors)

4. Copy the file into the directory containing the JDK/JRE and then run it. If you encounter difficulties,
you may need to export the environment variable _POSIX2_VERSION=199209. For example, on a
Ubuntu 32 bit Linux system:

$ sudo cp jai_imageio-1_1-lib-linux-i586-jdk.bin /usr/lib/jvm/java-6-sun
$ cd /usr/lib/jvm/java-6-sun
$ sudo su
$ export _POSIX2_VERSION=199209
$ sh jai_imageio-1_1-lib-linux-i586-jdk.bin
accept license
$ rm ./jai_imageio-1_1-lib-linux-i586-jdk.bin
$ exit

422 Chapter 13. Running in a Production Environment

https://jai.dev.java.net/binary-builds.html
http://download.java.net/media/jai/builds/release/1_1_3/jai-1_1_3-lib-windows-i586-jdk.exe
http://download.java.net/media/jai/builds/release/1_1_3/jai-1_1_3-lib-windows-i586-jre.exe
https://jai-imageio.dev.java.net/binary-builds.html
http://download.java.net/media/jai-imageio/builds/release/1.1/jai_imageio-1_1-lib-windows-i586-jdk.exe
http://download.java.net/media/jai-imageio/builds/release/1.1/jai_imageio-1_1-lib-windows-i586-jre.exe
https://jai.dev.java.net/binary-builds.html
https://jai-imageio.dev.java.net/binary-builds.html

GeoServer User Manual, Release 2.1-RC4

Installing native JAI manually

You can install the native JAI manually if you encounter problems using the above installers, or if you wish
to install the native JAI for more than one JDK/JRE.

Please refer to the GeoTools page on JAI installation for details.

GeoServer cleanup

Once the installation is complete, you may optionally remove the original JAI files from the GeoServer
instance:

jai_core-x.y.z.jar
jai_imageio-x.y.jar
jai_codec-x.y.z.jar

where x, y, and z refer to specific version numbers.

13.2 Container Considerations

Java web containers such as Tomcat or Jetty ship with configurations that allow for fast startup, but don’t
always deliver the best performance.

13.2.1 Optimize your JVM

Set the following performance settings in the Java virtual machine (JVM) for your container. These settings
are not specific to any container.

13.2. Container Considerations 423

http://docs.codehaus.org/display/GEOT/Manual+JAI+Installation
http://tomcat.apache.org
http://www.mortbay.org/jetty/

GeoServer User Manual, Release 2.1-RC4

Option Description
-server Enables the server Java Virtual Machine (JVM), which compiles bytecode

much earlier and with stronger optimizations. Startup and initial calls will be
slower due to “just-in-time” (JIT) compilation taking longer, but subsequent
calls will be faster.

-Xmx256M -Xms48m Allocates extra memory to your server. By default, JVM will use only 64MB of
heap. If you’re serving just vector data, you’ll be streaming, so having more
memory won’t increase performance. If you’re serving coverages, however,
JAI will use a disk cache. -Xmx256M allocates 256MB of memory to
GeoServer (use more if you have excess memory). It is also a good idea to
configure the JAI tile cache size (see the Server Config page in the Web
Administration Interface section) so that it uses 75% of the heap (0.75).
-Xmx48m will tell the virtual machine to grab a 48MB heap on startup, which
will make heap management more stable during heavy load serving.

-XX:SoftRefLRUPolicyMSPerMB=36000Increases the lifetime of “soft references” in GeoServer. GeoServer uses soft
references to cache datastore references and other similar requests. Making
them live longer will increase the effectiveness of the cache.

-XX:MaxPermSize=128mIncreases the maximum size of permanent generation (or “permgen”)
allocated to GeoServer to 128MB. Permgen is the heap portion where the class
bytecode is stored. GeoServer uses lots of classes, and it may exhaust that
space quickly, leading to out of memory errors. This is especially important if
you’re deploying GeoServer along with other applications in the same
container, or if you need to deploy multiple GeoServer instances inside the
same container.

-XX:XX:+UseParallelGCEnables the throughput garbage collector.

For more information about JVM configuration, see the article Performance tuning garbage collection in
Java.

13.3 Configuration Considerations

13.3.1 Use production logging

Logging may visibly affect the performance of your server. High logging levels are often necessary to track
down issues, but by default you should run with low levels. (You can switch the logging levels while
GeoServer is running.)

You can change the logging level in the Web Administration Interface. You’ll want to choose the PRODUC-
TION logging configuration.

13.3.2 Set a service strategy

A service strategy is the method in which output is served to the client. This is a balance between proper
form (being absolutely sure of reporting errors with the proper OGC codes, etc) and speed (serving output
as quickly as possible). This is a decision to be made based on the function that GeoServer is providing.
You can configure the service strategy by modifying the web.xml file of your GeoServer instance.

The possible strategies are:

424 Chapter 13. Running in a Production Environment

http://www.petefreitag.com/articles/gctuning/
http://www.petefreitag.com/articles/gctuning/

GeoServer User Manual, Release 2.1-RC4

Strategy Description
SPEED Serves output right away. This is the fastest strategy, but proper OGC errors are usually

omitted.
BUFFER Stores the whole result in memory, and then serves it after the output is complete. This

ensures proper OGC error reporting, but delays the response quite a bit and can exhaust
memory if the response is large.

FILE Similar to BUFFER, but stores the whole result in a file instead of in memory. Slower than
BUFFER, but ensures there won’t be memory issues.

PARTIAL-BUFFERA balance between BUFFER and SPEED, this strategy tries to buffer in memory a few KB
of response, then serves the full output.

13.3.3 Personalize your server

This is isn’t a performance consideration, but is just as important. In order to make GeoServer as useful
as possible, you should customize the server’s metadata to your organization. It may be tempting to skip
some of the configuration steps, and leave in the same keywords and abstract as the sample, but this will
only confuse potential users.

Suggestions:

• Fill out the WFS, WMS, and WCS Contents sections (this info will be broadcast as part of the capabil-
ities documents)

• Serve your data with your own namespace (and provide a correct URI)

• Remove default layers (such as topp:states)

13.3.4 Configure service limits

Make sure clients cannot request an inordinate amount of resources from your server.

In particular:

• Set the maximum amount of features returned by each WFS GetFeature request (this can also be set
on a per featuretype basis by modifying the info.xml files directly)

• Set the WMS request limits so that no request will consume too much memory or too much time

13.3.5 Set security

GeoServer includes support for WFS-T (transactions) by default, which lets users modify your data. If you
don’t want your database modified, you can turn off transactions in the the Web Administration Interface. Set
the Service Level to Basic.

If you’d like some users to be able to modify some but not all of your data, you will have to set up an
external security service. An easy way to accomplish this is to run two GeoServer instances and configure
them differently, and use authentication to only allow certain users to have access.

For extra security, make sure that the connection to the datastore that is open to all is through a user who has
read-only permissions. This will eliminate the possibility of a SQL injection (though GeoServer is generally
not vulnerable to that sort of attack).

13.3. Configuration Considerations 425

GeoServer User Manual, Release 2.1-RC4

13.3.6 Cache your data

Server-side caching of WMS tiles is the best way to increase performance. In caching, pre-rendered tiles will
be saved, eliminating the need for redundant WMS calls. There are several ways to set up WMS caching for
GeoServer. GeoWebCache is the simplest method, as it comes bundled with GeoServer. (See the section on
Caching with GeoWebCache for more details.) Another option is TileCache. You can also use a more generic
caching system, such as OSCache (an embedded cache service) or Squid (a web cache proxy).

13.4 Data Considerations

13.4.1 Use an external data directory

GeoServer comes with a built-in data directory. However, it is a good idea to separate the data from the
application. Using an external data directory allows for much easier upgrades, since there is no risk of
configuration information being overwritten. An external data directory also makes it easy to transfer
your configuration elsewhere if desired. To point to an external data directory, you only need to edit the
web.xml file. If you are new to GeoServer, you can copy (or just move) the data directory that comes with
GeoServer to another location.

13.4.2 Use a spatial database

Shapefiles are a very common format for geospatial data. But if you are running GeoServer in a production
environment, it is better to use a spatial database such as PostGIS. This is essential if doing transactions
(WFS-T). Most spatial databases provide shapefile conversion tools. Although there are many options for
spatial databases (see the section on Working with Data), PostGIS is recommended. Oracle, DB2, and ArcSDE
are also supported.

13.4.3 Pick the best performing coverage formats

There are very significant differences between performance of the various coverage formats.

Serving big coverage data sets with good performance requires some knowledge and tuning, since usually
data is set up for distribution and archival. The following tips try to provide you with a base knowledge of
how data restructuring affects performance, and how to use the available tools to get optimal data serving
performance.

Choose the right format

The first key element is choosing the right format. Some formats are designed for data exchange, others for
data rendering and serving. A good data serving format is binary, allows for multi-resolution extraction,
and provides support for quick subset extraction at native resolutions.

Examples of such formats are GeoTiff, ECW, JPEG 2000 and MrSid. ArcGrid on the other hand is an example
of format that’s particularly ill-suited for large dataset serving (it’s text based, no multi-resolution, and we
have to read it fully even to extract a data subset in the general case).

GeoServer supports MrSID, ECW and JPEG 2000 through the GDAL Image Format plugin. MrSID is the
easiest to work with, as their reader is now available under a GeoServer compatible open source format. If
you have ECW files you have several non-ideal options. If you are only using GeoServer for educational
or non-profit purposes you can use the plugin for free. If not you need to buy a license, since it’s server

426 Chapter 13. Running in a Production Environment

http://tilecache.org
http://www.opensymphony.com/oscache/
http://www.squid-cache.org
http://www.postgis.org

GeoServer User Manual, Release 2.1-RC4

software. You could also use GDAL to convert it to MrSID or tiled GeoTiffs. If your files are JPEG 2000 you
can use the utilities of ECW and MrSID software. But the fastest is Kakadu, which requires a license.

Setup Geotiff data for fast rendering

As soon as your Geotiffs gets beyond some tens of megabytes you’ll want to add the following capabilities:

• inner tiling

• overviews

Inner tiling sets up the image layout so that it’s organized in tiles instead of simple stripes (rows). This
allows much quicker access to a certain area of the geotiff, and the Geoserver readers will leverage this by
accessing only the tiles needed to render the current display area. The following sample command instructs
gdal_translate to create a tiled geotiff.

gdal_translate -of GTiff -projwin -180 90 -50 -10 -co "TILED=YES" bigDataSet.ecw myTiff.tiff

Overviews are downsampled version of the same image, that is, a zoomed out version, which is usually
much smaller. When Geoserver needs to render the Geotiff, it’ll look for the most appropriate overview as
a starting point, thus reading and converting way less data. Overviews can be added using gdaladdo, or
the the OverviewsEmbedded command included in Geotools. Here is a sample of using gdaladdo to add
overviews that are downsampled 2, 4, 8 and 16 times compared to the original:

gdaladdo -r average mytiff.tif 2 4 8 16

For more hands on information on how to use GDAL utilites along with Geoserver, have a look at the
BlueMarble data loading tutorial.

As a final note, Geotiff supports various kinds of compression, but we do suggest to not use it. Whilst it
allows for much smaller files, the decompression process is expensive and will be performed on each data
access, significantly slowing down rendering. In our experience, the decompression time is higher than the
pure disk data reading.

Handling huge data sets

If you have really huge data sets (several gigabytes), odds are that simply adding overviews and tiles does
not cut it, making intermediate resolution serving slow. This is because tiling occurs only on the native
resolution levels, and intermediate overviews are too big for quick extraction.

So, what you need is a way to have tiling on intermediate levels as well. This is supported by the Im-
agePyramid plugin.

This plugin assumes you have create various seamless image mosaics, each for a different resolution level
of the original image. In the mosaic, tiles are actual files (for more info about mosaics, see the Using the
ImageMosaic plugin). The whole pyramid structures looks like the following:

rootDirectory
+- pyramid.properties
+- 0

+- mosaic metadata files
+- mosaic_file_0.tiff
+- ...
+- mosiac_file_n.tiff

+- ...
+- 32

13.4. Data Considerations 427

http://www.gdal.org/gdal_translate.html
http://www.gdal.org/frmt_gtiff.html
http://www.gdal.org/gdaladdo.html
http://geoserver.org/display/GEOSDOC/Load+NASA+Blue+Marble+Data

GeoServer User Manual, Release 2.1-RC4

+- mosaic metadata files
+- mosaic_file_0.tiff
+- ...
+- mosiac_file_n.tiff

Creating a pyramid by hand can theoretically be done with gdal, but in practice it’s a daunting task that
would require some scripting, since gdal provides no “tiler” command to extract regular tiles out of an
image, nor one to create a downsampled set of tiles. As an alternative, you can use the geotools Pyra-
midBuilder tool (documentation on how to use this is pending, contact the developers if you need to use
it).

13.5 Linux init scripts

You will have to adjust the scripts to your environment. Download a script, rename it to geoserver and
move it to /etc/init.d. Use chmod to make the script executable and test with /etc/init.d/geoserver.

To set different values for environment variables, create a file /etc/default/geoserver and specify
your environment.

Example settings in /etc/default/geoserver for your environment:

USER=geoserver
GEOSERVER_DATA_DIR=/home/$USER/data_dir
GEOSERVER_HOME=/home/$USER/geoserver
JAVA_HOME=/usr/lib/jvm/java-6-sun
JAVA_OPTS="-Xms128m -Xmx512m"

13.5.1 Debian/Ubuntu

Download the init script

13.5.2 Suse

Download the init script

13.6 Other Considerations

13.6.1 Host your application separately

GeoServer includes a few sample applications in the demo section of the Web Administration Interface. For
production instances, we recommend against this bundling of your application. To make upgrades and
troubleshooting easier, please use a separate container for your application. It is perfectly fine, though, to
use one container manager (such as Tomcat or Jetty) to host both GeoServer and your application.

13.6.2 Proxy your server

GeoServer can have the capabilities documents properly report a proxy. You can configure this in the Server
configuration section of the Web Administration Interface and entering the URL of the external proxy in the
field labeled Proxy base URL.

428 Chapter 13. Running in a Production Environment

GeoServer User Manual, Release 2.1-RC4

13.6.3 Publish your server’s capabilities documents

In order to make it easier to find your data, put a link to your capabilities document somewhere on the web.
This will ensure that a search engine will crawl and index it.

13.6.4 Set up clustering

Setting up a Cluster is one of the best ways to improve the reliability and performance of your GeoServer
installation. All the most stable and high performance GeoServer instances are configured in some sort of
cluster. There are a huge variety of techniques to configure a cluster, including at the container level, the
virtual machine level, and the physical server level.

Andrea Aime is currently working on an overview of what some of the biggest GeoServer users have done,
for his ‘GeoServer in Production’ talk at FOSS4G 2009. In time that information will be migrated to tutorials
and white papers.

13.7 Troubleshooting

13.7.1 Checking WFS requests

It often happens that users report issues with hand made WFS requests not working as expected. In the
majority of the cases the request is malformed, but GeoServer does not complain and just ignores the mal-
formed part (this behaviour is the default to make older WFS clients work fine with GeoServer).

If you want GeoServer to validate most WFS XML request you can post it to the following URL:

http://host:port/geoserver/ows?strict=true

Any deviation from the required structure will be noted in an error message. The only request type that is
not validated in any case is the INSERT one (this is a GeoServer own limitation).

13.7.2 Leveraging GeoServer own log

GeoServer can generate a quite extensive log of its operations in the
$GEOSERVER_DATA_DIR/logs/geoserver.log file. Looking into such file is one of the first things to
do when troubleshooting a problem, in particular it’s interesting to see the log contents in correspondence
of a misbehaving request. The amount of information logged can vary based on the logging profile chosen
in the Server Settings configuration page.

13.7.3 Logging service requests

GeoServer provides a request logging filter that is normally inactive. The filter can log both the requested
URL and POST requests contents. Normally it is disabled due to its overhead. If you need to have an history
of the incoming requests you can enable it by changing the geoserver/WEB-INF/web.xml contents to
look like:

<filter>
<filter-name>Request Logging Filter</filter-name>
<filter-class>org.geoserver.filters.LoggingFilter</filter-class>
<init-param>

13.7. Troubleshooting 429

http://en.wikipedia.org/wiki/Cluster_(computing)

GeoServer User Manual, Release 2.1-RC4

<param-name>enabled</param-name>
<param-value>true</param-value>

</init-param>
<init-param>

<param-name>log-request-bodies</param-name>
<param-value>true</param-value>

</init-param>
</filter>

This will log both the requests and the bodies, resulting in something like the following:

08 gen 11:30:13 INFO [geoserver.filters] - 127.0.0.1 "GET /geoserver/wms?HEIGHT=330&WIDTH=660&LAYERS=nurc%3AArc_Sample&STYLES=&SRS=EPSG%3A4326&FORMAT=image%2Fjpeg&SERVICE=WMS&VERSION=1.1.1&REQUEST=GetMap&EXCEPTIONS=application%2Fvnd.ogc.se_inimage&BBOX=-93.515625,-40.078125,138.515625,75.9375" "Mozilla/5.0 (X11; U; Linux i686; it; rv:1.9.0.15) Gecko/2009102815 Ubuntu/9.04 (jaunty) Firefox/3.0.15" "http://localhost:8080/geoserver/wms?service=WMS&version=1.1.0&request=GetMap&layers=nurc:Arc_Sample&styles=&bbox=-180.0,-90.0,180.0,90.0&width=660&height=330&srs=EPSG:4326&format=application/openlayers"
08 gen 11:30:13 INFO [geoserver.filters] - 127.0.0.1 "GET /geoserver/wms?HEIGHT=330&WIDTH=660&LAYERS=nurc%3AArc_Sample&STYLES=&SRS=EPSG%3A4326&FORMAT=image%2Fjpeg&SERVICE=WMS&VERSION=1.1.1&REQUEST=GetMap&EXCEPTIONS=application%2Fvnd.ogc.se_inimage&BBOX=-93.515625,-40.078125,138.515625,75.9375" took 467ms
08 gen 11:30:14 INFO [geoserver.filters] - 127.0.0.1 "GET /geoserver/wms?REQUEST=GetFeatureInfo&EXCEPTIONS=application%2Fvnd.ogc.se_xml&BBOX=-93.515625%2C-40.078125%2C138.515625%2C75.9375&X=481&Y=222&INFO_FORMAT=text%2Fhtml&QUERY_LAYERS=nurc%3AArc_Sample&FEATURE_COUNT=50&Layers=nurc%3AArc_Sample&Styles=&Srs=EPSG%3A4326&WIDTH=660&HEIGHT=330&format=image%2Fjpeg" "Mozilla/5.0 (X11; U; Linux i686; it; rv:1.9.0.15) Gecko/2009102815 Ubuntu/9.04 (jaunty) Firefox/3.0.15" "http://localhost:8080/geoserver/wms?service=WMS&version=1.1.0&request=GetMap&layers=nurc:Arc_Sample&styles=&bbox=-180.0,-90.0,180.0,90.0&width=660&height=330&srs=EPSG:4326&format=application/openlayers"
08 gen 11:30:14 INFO [geoserver.filters] - 127.0.0.1 "GET /geoserver/wms?REQUEST=GetFeatureInfo&EXCEPTIONS=application%2Fvnd.ogc.se_xml&BBOX=-93.515625%2C-40.078125%2C138.515625%2C75.9375&X=481&Y=222&INFO_FORMAT=text%2Fhtml&QUERY_LAYERS=nurc%3AArc_Sample&FEATURE_COUNT=50&Layers=nurc%3AArc_Sample&Styles=&Srs=EPSG%3A4326&WIDTH=660&HEIGHT=330&format=image%2Fjpeg" took 314ms

13.7.4 Using JDK tools to get stack and memory dumps

The JDK contains three useful command line tools that can be used to gather information about GeoServer
instances that are leaking memory or not performing as requested: jps, jstack and jmap.

All tools work against a live Java Virtual Machine, the one running GeoServer in particular. In other for
them to work properly you’ll have to run them with a user that has enough privileges to connect to the JVM
process, in particular super user or the same user that’s running the JVM usually have the required right.

jps

jps is a tool listing all the Java processing running. It can be used to retried the pid (process id) of the
virtual machine that is running GeoServer. For example:

> jps -mlv

16235 org.apache.catalina.startup.Bootstrap start -Djava.util.logging.manager=org.apache.juli.ClassLoaderLogManager -Djava.util.logging.config.file=/home/aaime/devel/webcontainers/apache-tomcat-6.0.18/conf/logging.properties -Djava.endorsed.dirs=/home/aaime/devel/webcontainers/apache-tomcat-6.0.18/endorsed -Dcatalina.base=/home/aaime/devel/webcontainers/apache-tomcat-6.0.18 -Dcatalina.home=/home/aaime/devel/webcontainers/apache-tomcat-6.0.18 -Djava.io.tmpdir=/home/aaime/devel/webcontainers/apache-tomcat-6.0.18/temp
11521 -XX:MinHeapFreeRatio=10 -XX:MaxHeapFreeRatio=20 -Djava.library.path=/usr/lib/jni -Dosgi.requiredJavaVersion=1.5 -XX:MaxPermSize=256m -Xms64m -Xmx1024m -XX:CMSClassUnloadingEnabled -XX:CMSPermGenSweepingEnabled -XX:+UseParNewGC
16287 sun.tools.jps.Jps -mlv -Dapplication.home=/usr/lib/jvm/java-6-sun-1.6.0.16 -Xms8m

The output shows the pid, the main class name if available, and the parameters passed to the JVM at
startup. In this example 16235 is Tomcat hosting GeoServer, 11521 is an Eclipse instance, and 16287 is
jps itself. In the common case you’ll have only few JVM and the one running GeoServer can be identified
by the parameters passed to it.

jstack

jstack is a tool extracting a the current stack trace for each thread running in the virtual machine. It can be
used to identify scalability issues and to gather what the program is actually doing.

It usually takes people knowing about the inner workings of GeoServer can properly interpret the jstack
output.

An example of usage:

430 Chapter 13. Running in a Production Environment

http://java.sun.com/javase/6/docs/technotes/tools/share/jps.html
http://java.sun.com/javase/6/docs/technotes/tools/share/jstack.html

GeoServer User Manual, Release 2.1-RC4

> jstack -F -l 16235 > /tmp/tomcat-stack.txt
Attaching to process ID 16235, please wait...
Debugger attached successfully.
Server compiler detected.
JVM version is 14.2-b01

And the file contents might look like:

Deadlock Detection:

No deadlocks found.

Thread 16269: (state = BLOCKED)
- java.lang.Object.wait(long) @bci=0 (Interpreted frame)
- org.apache.tomcat.util.threads.ThreadPool$MonitorRunnable.run() @bci=10, line=565 (Interpreted frame)
- java.lang.Thread.run() @bci=11, line=619 (Interpreted frame)

Locked ownable synchronizers:
- None

Thread 16268: (state = IN_NATIVE)
- java.net.PlainSocketImpl.socketAccept(java.net.SocketImpl) @bci=0 (Interpreted frame)
- java.net.PlainSocketImpl.accept(java.net.SocketImpl) @bci=7, line=390 (Interpreted frame)
- java.net.ServerSocket.implAccept(java.net.Socket) @bci=60, line=453 (Interpreted frame)
- java.net.ServerSocket.accept() @bci=48, line=421 (Interpreted frame)
- org.apache.jk.common.ChannelSocket.accept(org.apache.jk.core.MsgContext) @bci=46, line=306 (Interpreted frame)
- org.apache.jk.common.ChannelSocket.acceptConnections() @bci=72, line=660 (Interpreted frame)
- org.apache.jk.common.ChannelSocket$SocketAcceptor.runIt(java.lang.Object[]) @bci=4, line=870 (Interpreted frame)
- org.apache.tomcat.util.threads.ThreadPool$ControlRunnable.run() @bci=167, line=690 (Interpreted frame)
- java.lang.Thread.run() @bci=11, line=619 (Interpreted frame)

Locked ownable synchronizers:
- None

Thread 16267: (state = BLOCKED)
- java.lang.Object.wait(long) @bci=0 (Interpreted frame)
- java.lang.Object.wait() @bci=2, line=485 (Interpreted frame)
- org.apache.tomcat.util.threads.ThreadPool$ControlRunnable.run() @bci=26, line=662 (Interpreted frame)
- java.lang.Thread.run() @bci=11, line=619 (Interpreted frame)

Locked ownable synchronizers:
- None

...

jmap

jmap is a tool to gather information about the a Java virtual machine. It can be used in a few interesting
ways.

By running it without arguments (past the pid of the JVM) it will print out a dump of the native libraries
used by the JVM. This can come in handy when one wants to double check GeoServer is actually using a
certain version of a native library (e.g., GDAL):

> jmap 17251

13.7. Troubleshooting 431

http://java.sun.com/javase/6/docs/technotes/tools/share/jmap.html

GeoServer User Manual, Release 2.1-RC4

Attaching to process ID 17251, please wait...
Debugger attached successfully.
Server compiler detected.
JVM version is 14.2-b01
0x08048000 46K /usr/lib/jvm/java-6-sun-1.6.0.16/jre/bin/java
0x7f87f000 6406K /usr/lib/jvm/java-6-sun-1.6.0.16/jre/lib/i386/libNCSEcw.so.0
0x7f9b2000 928K /usr/lib/libstdc++.so.6.0.10
0x7faa1000 7275K /usr/lib/jvm/java-6-sun-1.6.0.16/jre/lib/i386/libgdal.so.1
0x800e9000 1208K /usr/lib/jvm/java-6-sun-1.6.0.16/jre/lib/i386/libclib_jiio.so
0x80320000 712K /usr/lib/jvm/java-6-sun-1.6.0.16/jre/lib/i386/libNCSUtil.so.0
0x80343000 500K /usr/lib/jvm/java-6-sun-1.6.0.16/jre/lib/i386/libNCSCnet.so.0
0x8035a000 53K /lib/libgcc_s.so.1
0x8036c000 36K /usr/lib/jvm/java-6-sun-1.6.0.16/jre/lib/i386/libnio.so
0x803e2000 608K /usr/lib/jvm/java-6-sun-1.6.0.16/jre/lib/i386/libawt.so
0x80801000 101K /usr/lib/jvm/java-6-sun-1.6.0.16/jre/lib/i386/libgdaljni.so
0x80830000 26K /usr/lib/jvm/java-6-sun-1.6.0.16/jre/lib/i386/headless/libmawt.so
0x81229000 93K /usr/lib/jvm/java-6-sun-1.6.0.16/jre/lib/i386/libnet.so
0xb7179000 74K /usr/lib/jvm/java-6-sun-1.6.0.16/jre/lib/i386/libzip.so
0xb718a000 41K /lib/tls/i686/cmov/libnss_files-2.9.so
0xb7196000 37K /lib/tls/i686/cmov/libnss_nis-2.9.so
0xb71b3000 85K /lib/tls/i686/cmov/libnsl-2.9.so
0xb71ce000 29K /lib/tls/i686/cmov/libnss_compat-2.9.so
0xb71d7000 37K /usr/lib/jvm/java-6-sun-1.6.0.16/jre/lib/i386/native_threads/libhpi.so
0xb71de000 184K /usr/lib/jvm/java-6-sun-1.6.0.16/jre/lib/i386/libjava.so
0xb7203000 29K /lib/tls/i686/cmov/librt-2.9.so
0xb725d000 145K /lib/tls/i686/cmov/libm-2.9.so
0xb7283000 8965K /usr/lib/jvm/java-6-sun-1.6.0.16/jre/lib/i386/server/libjvm.so
0xb7dc1000 1408K /lib/tls/i686/cmov/libc-2.9.so
0xb7f24000 9K /lib/tls/i686/cmov/libdl-2.9.so
0xb7f28000 37K /usr/lib/jvm/java-6-sun-1.6.0.16/jre/lib/i386/jli/libjli.so
0xb7f32000 113K /lib/tls/i686/cmov/libpthread-2.9.so
0xb7f51000 55K /usr/lib/jvm/java-6-sun-1.6.0.16/jre/lib/i386/libverify.so
0xb7f60000 114K /lib/ld-2.9.so

It’s also possible to get a quick summary of the JVM heap status:

> jmap -heap 17251

Attaching to process ID 17251, please wait...
Debugger attached successfully.
Server compiler detected.
JVM version is 14.2-b01

using thread-local object allocation.
Parallel GC with 2 thread(s)

Heap Configuration:
MinHeapFreeRatio = 40
MaxHeapFreeRatio = 70
MaxHeapSize = 778043392 (742.0MB)
NewSize = 1048576 (1.0MB)
MaxNewSize = 4294901760 (4095.9375MB)
OldSize = 4194304 (4.0MB)
NewRatio = 8
SurvivorRatio = 8
PermSize = 16777216 (16.0MB)
MaxPermSize = 67108864 (64.0MB)

432 Chapter 13. Running in a Production Environment

GeoServer User Manual, Release 2.1-RC4

Heap Usage:
PS Young Generation
Eden Space:

capacity = 42401792 (40.4375MB)
used = 14401328 (13.734176635742188MB)
free = 28000464 (26.703323364257812MB)
33.96396076845054% used

From Space:
capacity = 4718592 (4.5MB)
used = 2340640 (2.232208251953125MB)
free = 2377952 (2.267791748046875MB)
49.60462782118056% used

To Space:
capacity = 4587520 (4.375MB)
used = 0 (0.0MB)
free = 4587520 (4.375MB)
0.0% used

PS Old Generation
capacity = 43188224 (41.1875MB)
used = 27294848 (26.0303955078125MB)
free = 15893376 (15.1571044921875MB)
63.19974630121396% used

PS Perm Generation
capacity = 38404096 (36.625MB)
used = 38378640 (36.60072326660156MB)
free = 25456 (0.0242767333984375MB)
99.93371540369027% used

In the result it can be seen that the JVM is allowed to use up to 742MB of memory, and that at the moment
the JVM is using 130MB (rough sum of the capacities of each heap section). In case of a persistent memory
leak the JVM will end up using whatever is allowed to and each section of the heap will be almost 100%
used.

To see how the memory is actually being used in a succinct way the following command can be used (on
Windows, replace head -25 with more):

> jmap -histo:live 17251 | head -25

num #instances #bytes class name
--

1: 81668 10083280 <constMethodKlass>
2: 81668 6539632 <methodKlass>
3: 79795 5904728 [C
4: 123511 5272448 <symbolKlass>
5: 7974 4538688 <constantPoolKlass>
6: 98726 3949040 org.hsqldb.DiskNode
7: 7974 3612808 <instanceKlassKlass>
8: 9676 2517160 [B
9: 6235 2465488 <constantPoolCacheKlass>
10: 10054 2303368 [I
11: 83121 1994904 java.lang.String
12: 27794 1754360 [Ljava.lang.Object;
13: 9227 868000 [Ljava.util.HashMap$Entry;
14: 8492 815232 java.lang.Class
15: 10645 710208 [S
16: 14420 576800 org.hsqldb.CachedRow
17: 1927 574480 <methodDataKlass>
18: 8937 571968 org.apache.xerces.dom.ElementNSImpl

13.7. Troubleshooting 433

GeoServer User Manual, Release 2.1-RC4

19: 12898 561776 [[I
20: 23122 554928 java.util.HashMap$Entry
21: 16910 541120 org.apache.xerces.dom.TextImpl
22: 9898 395920 org.apache.xerces.dom.AttrNSImpl

By the dump we can see most of the memory is used by the GeoServer code itself (first 5 items) followed
by the HSQL cache holding a few rows of the EPSG database. In case of a memory leak a few object types
will hold the vast majority of the live heap. Mind, to look for a leak the dump should be gathered with
the server almost idle. If, for example, the server is under a load of GetMap requests the main memory
usage will be the byte[] holding the images while they are rendered, but that is not a leak, it’s legitimate
and temporary usage.

In case of memory leaks a developer will probably ask for a full heap dump to analyze with a high end
profiling tool. Such dump can be generated with the following command:

> jmap -dump:live,file=/tmp/dump.hprof 17251
Dumping heap to /tmp/dump.hprof ...
Heap dump file created

The dump files are generally as big as the memory used so it’s advisable to compress the resulting file
before sending it to a developer.

434 Chapter 13. Running in a Production Environment

CHAPTER 14

Caching with GeoWebCache

GeoWebCache is a tiling server. It runs as a proxy between a map client and map server, caching (stor-
ing) tiles as they are requested, eliminating redundant request processing and thus saving large amounts
of processing time. GeoWebCache has been integrated into GeoServer, although it is also available as a
standalone product for use with other map servers.

This section will discuss the version of GeoWebCache embedded in GeoServer. For information about the
standalone product, please see the GeoWebCache homepage.

14.1 Using GeoWebCache

Note: For an more in-depth discussion of using GeoWebCache, please see the GeoWebCache documenta-
tion.

14.1.1 GeoWebCache integration with GeoServer WMS

GeoWebCache (as of GeoServer 2.1.0) is transparently integrated with the GeoServer WMS, and so requires
no special endpoint or custom URL in order to be used. In this way one can have the simplicity of a standard
WMS endpoint with the performance of a tiled client.

This direct integration is turned off by default. It can be enabled by going to the GeoWebCache Settings page
in the Web Administration Interface.

When this feature is enabled, GeoServer WMS will cache and retrieve tiles from GeoWebCache (via a
GetMap request) only if the following conditions apply:

1. TILED=true is included in the request.

435

http://geowebcache.org
http://geowebcache.org
http://geowebcache.org/docs/
http://geowebcache.org/docs/

GeoServer User Manual, Release 2.1-RC4

2. All other request parameters (tile height and width) match up with a tile in the layer’s gridset.

3. There are no vendor-specific parameters (such as cql_filter).

In addition, when direct integration is enabled, the WMS capabilities document (via a GetCapabilities re-
quest) will only return the WMS-C vendor-specific capabilities elements (such as a <TileSet> element for
each cached layer/CRS/format combination) if TILED=true is appended to the GetCapabilities request.

Note: For more information on WMS-C, please see the WMS Tiling Client Recommendation from OSGeo.

Note: GeoWebCache integration is not compatible with the OpenLayers-based Layer Preview, as the pre-
view does not usually align with the GeoWebCache layer gridset. This is because the OpenLayers appli-
cation calculates the tileorigin based on the layer’s bounding box, which is different from the gridset. It
is, however, very possible to create an OpenLayers application that caches tiles; just make sure that the
tileorigin aligns with the gridset.

14.1.2 GeoWebCache endpoint URL

When not using direct integration, you can point your client directly to GeoWebCache.

Warning: GeoWebCache is not a true WMS, and so the following is an oversimplification. If you
encounter errors, see the Troubleshooting page for help.

To direct your client to GeoWebCache (and thus receive cached tiles) you need to change the WMS URL.

If your application requests WMS tiles from GeoServer at this URL:

http://example.com/geoserver/wms

You can invoke the GeoWebCache WMS instead at this URL:

http://example.com/geoserver/gwc/service/wms

In other words, add /gwc/service/wms in between the path to your GeoServer instance and the WMS
call.

As soon as tiles are requested through GeoWebCache, GeoWebCache automatically starts saving them. This
means that initial requests for tiles will not be accelerated since GeoServer will still need to generate the
tiles. To automate this process of requesting tiles, you can seed the cache. See the section on Seeding and
refreshing for more details.

14.1.3 Disk quota

GeoWebCache has a built-in disk quota feature to prevent disk space from growing unbounded. Disk
quotas are turned off by default, but can be configured on the GeoWebCache Settings page in the Web Admin-
istration Interface. You can set the maximum size of the cache directory, poll interval, and what policy of tile
removal to use when the quota is exceeded. Tiles can be removed based on usage (“Least Frequently Used”
or LFU) or timestamp (“Least Recently Used” or LRU).

14.1.4 Integration with external mapping sites

The documentation on the GeoWebCache homepage contains examples for creating applications that inte-
grate with Google Maps, Google Earth, Bing Maps, and more.

436 Chapter 14. Caching with GeoWebCache

http://wiki.osgeo.org/wiki/WMS_Tiling_Client_Recommendation
http://geowebcache.org

GeoServer User Manual, Release 2.1-RC4

14.1.5 Support for custom projections

The version of GeoWebCache that comes embedded in GeoServer automatically configures every layer
served in GeoServer with the two most common projections:

• EPSG:4326 (latitude/longitude)

• EPSG:900913 (Spherical Mercator, the projection used in Google Maps)

If you need another projection, you can create a custom configuration file, geowebcache.xml, in the
same directory that contains the cache (see the GeoWebCache Configuration page for information on how
to set this). This configuration file is the same as used by the standalone version of GeoWebCache (see
that documentation for more details). The configuration syntax directly supports the most common WMS
parameters such as style, palette, and background color. To prevent conflicts, the layers in this file should
be named differently from the ones that are loaded from GeoServer.

14.2 GeoWebCache Configuration

GeoWebCache is automatically configured to be used with GeoServer with the most common options, with
no setup required. All communication between GeoServer and GeoWebCache happens by passing mes-
sages inside the JVM.

By default, all layers served by GeoServer will be known to GeoWebCache. See the GeoWebCache Demo page
page to test the configuration.

Note: The GEOSERVER_WMS_URL parameter in web.xml, used in earlier versions of GeoServer, is depre-
cated and should not be used.

14.2.1 Changing the cache directory

GeoWebCache will automatically store cached tiles in a gwc directory inside your GeoServer data directory.
To set a different directory, stop GeoServer (if it is running) and add the following code to your GeoServer
web.xml file (located in the WEB-INF directory):

<context-param>
<param-name>GEOWEBCACHE_CACHE_DIR</param-name>
<param-value>C:\temp</param-value>

</context-param>

Change the path inside <param-value> to the desired cache path (such as C:\temp or /tmp). Restart
GeoServer when done.

Note: Make sure GeoServer has write access in this directory.

14.2.2 Custom configuration

If you need to access more features than the automatic configuration offers, you can create a custom config-
uration file. Inside the GeoWebCache cache directory (see above), create a file named geowebcache.xml.
Please refer to the GeoWebCache documentation for how to customize this file. Restart GeoServer for the
changes to take effect. You may also wish to check the logfiles after starting GeoServer to verify that this
file has been successfully read.

14.2. GeoWebCache Configuration 437

http://geowebcache.org/docs

GeoServer User Manual, Release 2.1-RC4

14.2.3 GeoWebCache with multiple GeoServer instances

For stability reasons, it is not recommended to use the embedded GeoWebCache with multiple GeoServer
instances. If you want configure GeoWebCache as a front-end for multiple instances of GeoServer, we
recommend using the standalone GeoWebCache.

14.3 GeoWebCache Demo page

GeoWebCache comes with a demo page where you can view configured layers, reload the configuration
(when changing settings or adding new layers), and seed/refresh the existing cache on a per-layer basis.

14.3.1 Viewing

To view the GeoWebCache demo page, append /gwc/demo to the address of your GeoServer instance. For
example, if your GeoServer is at the following address:

http://localhost:8080/geoserver

The GeoWebCache demo page is accessible here:

http://localhost:8080/geoserver/gwc/demo

If there is a problem loading this page, GeoWebCache may be set up incorrectly. Verify the steps on the
Using GeoWebCache page have been carried out successfully.

14.3.2 Reload configuration

The demo page contains a list of every layer that GeoWebCache is aware of. This is typically (though not
necessarily) identical to the list of layers as published in the GeoServer WMS capabilities document. If con-
figuration changes are made to GeoServer, GeoWebCache will not automatically become aware of them.

438 Chapter 14. Caching with GeoWebCache

http://geowebcache.org

GeoServer User Manual, Release 2.1-RC4

To ensure that GeoWebCache is using the latest configuration information, click the Reload Configuration
button. Reloading the configuration will trigger authentication to GeoServer, and will require an adminis-
tration username and password. Use the same username and password that you would use to log in to the
Web Administration Interface. (See Interface basics for more information.) After a successful login, the number
of layers found and loaded will be displayed.

14.3.3 Layers and output formats

For each layer that GeoWebCache serves, links are typically available for a number of different projections
and output formats. By default, OpenLayers applications are available using image formats of PNG, PNG8,
GIF, and JPEG in both EPSG:4326 (standard lat/lon) and EPSG:900913 (used in Google Maps) projections.
In addition, KML output is available (EPSG:4326 only) using the same image formats, plus vector data
(“kml”).

Also on the list is an option to seed the layers (Seed this layer). More on this option can be found on the
Seeding and refreshing page.

14.4 Seeding and refreshing

The primary benefit to GeoWebCache is that it allows for the acceleration of normal WMS tile request
processing by eliminating the need for the tiles to be regenerated for every request. This page discusses tile
generation.

14.4.1 Generating tiles

There are two ways for tiles to be generated by GeoWebCache. The first way for tiles to be generated is
during normal map viewing. In this case, tiles are cached only when they are requested from a client,
either through map browsing (such as in OpenLayers) or through manual WMS tile requests. The first
time a map view is requested it will be roughly at the same speed as a standard GeoServer WMS request.
The second and subsequent map viewings will be greatly accelerated as those tiles will have already been
generated. The main advantage to this method is that it requires no preprocessing, and that only the data
that has been requested will be cached, thus potentially saving disk space as well. The disadvantage to this
method is that map viewing will be only intermittently accelerated, reducing the quality of user experience.

14.4. Seeding and refreshing 439

GeoServer User Manual, Release 2.1-RC4

The other way for tiles to be generated is by seeding. Seeding is the process where map tiles are generated
and cached internally from GeoWebCache. When processed in advance, the user experience is greatly
enhanced, as the user never has to wait for tiles to be generated. The disadvantage to this process is that
seeding can be a very time- and disk-consuming process.

In practice, a combination of both methods are usually used, with certain zoom levels (or certain areas of
zoom levels) seeded, and the less-likely-viewed tiles are left uncached.

14.4.2 Seeding options

The GeoWebCache Demo page contains a link next to each layer entitled Seed this layer. This link will trigger
authentication with the GeoServer configuration. Use the same username and password that you would
use to log in to the Web Administration Interface. (See Interface basics for more information.) After a successful
login, a new page shows up with seeding options.

The seeding options page contains various parameters for configuring the way that the layer is seeded.

Option Description
Number of
threads to
use

Possible values are between 1 and 16.

Type of
operation

Sets the operation. There are three possible values: Seed (creates tiles, but does not
overwrite existing ones), Reseed (like Seed, but overwrites existing tiles) and
Truncate (deletes all tiles within the given parameters)

SRS Specifies the projection to use when creating tiles (default values are EPSG:4326
and EPSG:900913)

Format Sets the image format of the tiles. Can be application/vnd.google-earth.kml+xml
(Google Earth KML), image/gif (GIF), image/jpeg (JPEG), image/png (24 bit PNG),
and image/png8 (8 bit PNG)

Zoom start Sets the minimum zoom level. Lower values indicate map views that are more
zoomed out. When seeding, GeoWebCache will only create tiles for those zoom
levels inclusive of this value and Zoom stop.

Zoom stop Sets the maximum zoom level. Higher values indicate map views that are more
zoomed in. When seeding, GeoWebCache will only create tiles for those zoom
levels inclusive of this value and Zoom start.

Bounding box (optional) Allows seeding to occur over a specified extent, instead of the full extent
of the layer. This is useful if your layer contains data over a large area, but the
application will only request tiles from a subset of that area. The four boxes
correspond to Xmin, Ymin, Xmax, and Ymax.

When finished, click Submit.

Warning: Currently there is no progress bar to inform you of the time required to perform the opera-
tion, nor is there any intelligent handling of disk space. In short, the process may take a very long time,
and the cache may fill up your disk. You may wish to set a Disk quota before running a seed job.

14.4.3 Manually deleting cached content

If you have direct access to the file system on the server, you can also delete the appropriate layers in the
cache directory. The structure of the cache directory is [root] / layer / projection_zoomlevel.

440 Chapter 14. Caching with GeoWebCache

GeoServer User Manual, Release 2.1-RC4

14.5 Troubleshooting

Sometimes errors will occur when requesting data from GeoWebCache. Below are some of the most com-
mon reasons.

14.5.1 Grid misalignment

Sometimes errors will occur saying that the “resolution is not supported” or the “bounds do not align.”
This is due to the client making WMS requests that do not align with the grid of tiles that GeoWebCache
has created, such as differing map bounds or layer bounds, or an unsupported resolution. If you are us-
ing OpenLayers as a client, looking at the source code of the included demos may provide more clues to
matching up the grid.

An alternative workaround is to set up GeoWebCache integration with the GeoServer WMS. See the section
on Seeding and refreshing for more details.

14.5. Troubleshooting 441

GeoServer User Manual, Release 2.1-RC4

442 Chapter 14. Caching with GeoWebCache

CHAPTER 15

Google Earth

This section contains information on Google Earth support in GeoServer.

Google Earth is a 3-D virtual globe program. A free download from Google, it allows the user to virtually
view, pan, and fly around Earth imagery. The imagery on Google Earth is obtained from a variety of sources,
mainly from commercial satellite and aerial photography providers.

Google Earth recognizes a markup language called KML (Keyhole Markup Language) for data exchange.
GeoServer integrates with Google Earth by supporting KML as a native output format. Any data configured
to be served by GeoServer is thus able to take advantage of the full visualization capabilities of Google
Earth.

15.1 Overview

15.1.1 Why use GeoServer with Google Earth?

GeoServer is useful when one wants to put a lot of data on to Google Earth. GeoServer automatically
generates KML that can be easily and quickly served and visualized in Google Earth. GeoServer oper-
ates entirely through a Network Link, which allows it to selectively return information for the area being
viewed. With GeoServer as a robust and powerful server and Google Earth providing rich visualizations,
they are a perfect match for sharing your data.

15.1.2 Standards-based implementation

GeoServer supports Google Earth by providing KML as a Web Map Service (WMS) output format. This
means that adding data published by GeoServer is as simple as constructing a standard WMS request and
specifying “application/vnd.google-earth.kml+xml” as the outputFormat. Since generating KML is just
a WMS request, it fully supports Styling via SLD.

See the next section (Quickstart) to view GeoServer and Google Earth in action.

15.2 Quickstart

Note: If you are using GeoServer locally, the GEOSERVER_URL is usually

443

http://earth.google.com/
http://earth.google.com/kml/kml_intro.html
http://code.google.com/apis/kml/documentation/kml_tut.html#network_links
http://en.wikipedia.org/wiki/Web_Map_Service

GeoServer User Manual, Release 2.1-RC4

http://localhost:8080/geoserver

15.2.1 Viewing a layer

Once GeoServer is installed and running, open up a web browser and go to the web admin console (Interface
basics). Navigate to the Layer Preview by clicking on the Layer Preview link at the bottom of the left sidebar.
You will be presented with a list of the currently configured layers in your GeoServer instance. Find the
row that says topp:states. To the right of the layer click on the link that says KML.

Figure 15.1: The Map Preview page

If Google Earth is correctly installed on your computer, you will see a dialog asking how to open the file.
Select Open with Google Earth.

When Google Earth is finished loading the result will be similar to below.

15.2.2 Direct access to KML

All of the configured FeatureTypes are available to be output as KML (and thus loaded into Google Earth).
The URL structure for KMLs is:

http://GEOSERVER_URL/wms/kml?layers=<layername>

For example, the topp:states layer URL is:

444 Chapter 15. Google Earth

GeoServer User Manual, Release 2.1-RC4

Figure 15.2: Open with Google Earth

15.2. Quickstart 445

GeoServer User Manual, Release 2.1-RC4

Figure 15.3: The topp:states layer rendered in Google Earth

http://GEOSERVER_URL/wms/kml?layers=topp:states

15.2.3 Adding a Network Link

An alternative to serving KML directly into Google Earth is to use a Network Link. A Network Link allows
for better integration into Google Earth. For example, using a Network Link enables the user to refresh the
data within Google Earth, without having to retype a URL, or click on links in the GeoServer Map Preview
again.

To add a Network Link, pull down the Add menu, and go to Network Link. The New Network Link
dialog box will appear. Name your layer in the Name field. (This will show up in My Places on the main
Google Earth screen.) Set Link to:

http://GEOSERVER_URL/wms/kml?layers=topp:states

(Don’t forget to replace the GEOSERVER_URL.) Click OK. You can now save this layer in your My Places.

Check out the sections on Tutorials and the KML Styling for more information.

446 Chapter 15. Google Earth

GeoServer User Manual, Release 2.1-RC4

Figure 15.4: Adding a network link

15.2. Quickstart 447

GeoServer User Manual, Release 2.1-RC4

15.3 KML Styling

15.3.1 Introduction

Keyhole Markup Langauge (KML), when created and output by GeoServer, is styled using Styled Layer
Descriptors (SLD). This is the same approach used to style standard WMS output formats, but is a bit
different from how Google Earth is normally styled, behaving more like Cascading Style Sheets (CSS).
The style of the map is specified in the SLD file as a series of rules, and then the data matching those
rules is styled appropriately in the KML output. For those unfamiliar with SLD, a good place to start
is the Introduction to SLD. The remainder of this guide contains information about how to construct SLD
documents in order to impact the look of KML produced by GeoServer.

Contents

Basic SLD Creation Wizard

Creating SLD by hand

SLD Structure

Points

Lines

Polygons

Text Labels

Descriptions

15.3.2 Basic SLD Creation Wizard

Basic SLD styling can be accomplished with the coming GeoExt Styler. It provides a GUI to create new
styles. These styles will work seamlessly with KML output from GeoServer.

15.3.3 Creating SLD by hand

One can edit the SLD files directly instead of using the Styler GUI. For the most complete exploration of
editing SLDs see the Styling section. The examples below show how some of the basic styles show up in
Google Earth.

15.3.4 SLD Structure

The following is a skeleton of a SLD document. It can be used as a base on which to expand upon to create
more interesting and complicated styles.

<StyledLayerDescriptor version="1.0.0"
xsi:schemaLocation="http://www.opengis.net/sld StyledLayerDescriptor.xsd"
xmlns="http://www.opengis.net/sld"
xmlns:ogc="http://www.opengis.net/ogc"
xmlns:xlink="http://www.w3.org/1999/xlink"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<NamedLayer>

448 Chapter 15. Google Earth

http://en.wikipedia.org/wiki/Styled_Layer_Descriptor
http://en.wikipedia.org/wiki/Styled_Layer_Descriptor
http://geoserver.org/display/GEOS/GeoExt+Styler

GeoServer User Manual, Release 2.1-RC4

<Name>Default Line</Name>
<UserStyle>

<Title>My Style</Title>
<Abstract>A style</Abstract>
<FeatureTypeStyle>

<Rule>

<!-- symbolizers go here -->

</Rule>
</FeatureTypeStyle>

</UserStyle>
</NamedLayer>

</StyledLayerDescriptor>

Figure 3: Basic SLD structure

In order to test the code snippets in this document, create an SLD with the content as shown in Figure 3,
and then add the specific code you wish to test in the space that says <!-- symbolizers go here -->.
To view, edit, or add SLD files to GeoServer, navigate to Config -> Data -> Styles.

15.3.5 Points

In SLD, styles for points are specified via a PointSymbolizer. An empty PointSymbolizer element will result
in a default KML style:

<PointSymbolizer>
</PointSymbolizer>

Figure 15.5: Figure 4: Default point

Three aspects of points that can be specified are color, opacity, and the icon.

15.3. KML Styling 449

GeoServer User Manual, Release 2.1-RC4

Point Color

The color of a point is specified with a CssParameter element and a fill attribute. The color is specified
as a six digit hexadecimal code.

<PointSymbolizer>
<Graphic>

<Mark>
<Fill>

<CssParameter name="fill">#ff0000</CssParameter>
</Fill>

</Mark>
</Graphic>

</PointSymbolizer>

Figure 15.6: Figure 5: Setting the point color (#ff0000 = 100% red)

Point Opacity

The opacity of a point is specified with a CssParameter element and a fill-opacity attribute. The opac-
ity is specified as a floating point number between 0 and 1, with 0 being completely transparent, and 1
being completely opaque.

<PointSymbolizer>
<Graphic>

<Mark>
<Fill>

<CssParameter name="fill-opacity">0.5</CssParameter>
</Fill>

</Mark>
</Graphic>

</PointSymbolizer>

450 Chapter 15. Google Earth

GeoServer User Manual, Release 2.1-RC4

Figure 15.7: Figure 6: Setting the point opacity (0.5 = 50% opaque)

Point Icon

An icon different from the default can be specified with the ExternalGraphic element:

<PointSymbolizer>
<Graphic>

<ExternalGraphic>
<OnlineResource xlink:type="simple"

xlink:href="http://maps.google.com/mapfiles/kml/pal3/icon55.png"/>
<Format>image/png</Format>

</ExternalGraphic>
</Graphic>

</PointSymbolizer>

In Figure 7, the custom icon is specified as a remote URL. It is also possible to place the graphic in the
GeoServer styles directory, and then specify the filename only:

<PointSymbolizer>
<Graphic>

<ExternalGraphic>
<OnlineResource xlink:type="simple" xlink:href="icon55.png"/>
<Format>image/png</Format>

</ExternalGraphic>
</Graphic>

</PointSymbolizer>

Figure 8: Specifying a local file for a graphic point

15.3.6 Lines

Styles for lines are specified via a LineSymbolizer. An empty LineSymbolizer element will result in
a default KML style:

15.3. KML Styling 451

GeoServer User Manual, Release 2.1-RC4

Figure 15.8: Figure 7: A custom icon for points

<LineSymbolizer>
</LineSymbolizer>

The aspects of the resulting line which can be specified via a LineSymbolizer are color, width, and opacity.

Line Color

The color of a line is specified with a CssParameter element and a stroke attribute. The color is specified
as a six digit hexadecimal code.

<LineSymbolizer>
<Stroke>

<CssParameter name="stroke">#ff0000</CssParameter>
</Stroke>

</LineSymbolizer>

Line Width

The width of a line is specified with a CssParameter element and a stroke-width attribute. The width
is specified as an integer (in pixels):

<LineSymbolizer>
<Stroke>

<CssParameter name="stroke-width">5</CssParameter>
</Stroke>

</LineSymbolizer>

452 Chapter 15. Google Earth

GeoServer User Manual, Release 2.1-RC4

Figure 15.9: Figure 9: Default line

15.3. KML Styling 453

GeoServer User Manual, Release 2.1-RC4

Figure 15.10: Figure 10: Line rendered with color #ff0000 (100% red)

454 Chapter 15. Google Earth

GeoServer User Manual, Release 2.1-RC4

Figure 15.11: Figure 11: Line rendered with a width of five (5) pixels

15.3. KML Styling 455

GeoServer User Manual, Release 2.1-RC4

Line Opacity

The opacity of a line is specified with a CssParameter element and a fill-opacity attribute. The
opacity is specified as a floating point number between 0 and 1, with 0 being completely transparent, and 1
being completely opaque.

<LineSymbolizer>
<Stroke>

<CssParameter name="stroke-opacity">0.5</CssParameter>
</Stroke>

</LineSymbolizer>

Figure 15.12: Figure 12: A line rendered with 50% opacity

15.3.7 Polygons

Styles for polygons are specified via a PolygonSymbolizer. An empty PolygonSymbolizer element
will result in a default KML style:

456 Chapter 15. Google Earth

GeoServer User Manual, Release 2.1-RC4

<PolygonSymbolizer>
</PolygonSymbolizer>

Polygons have more options for styling than points and lines, as polygons have both an inside (“fill”) and
an outline (“stroke”). The aspects of polygons that can be specified via a PolygonSymbolizer are stroke
color, stroke width, stroke opacity, fill color, and fill opacity.

Polygon Stroke Color

The outline color of a polygon is specified with a CssParameter element and stroke attribute inside of
a Stroke element. The color is specified as a 6 digit hexadecimal code:

<PolygonSymbolizer>
<Stroke>

<CssParameter name="stroke">#0000FF</CssParameter>
</Stroke>

</PolygonSymbolizer>

Figure 15.13: Figure 13: Outline of a polygon (#0000FF or 100% blue)

15.3. KML Styling 457

GeoServer User Manual, Release 2.1-RC4

Polygon Stroke Width

The outline width of a polygon is specified with a CssParameter element and stroke-width attribute
inside of a Stroke element. The width is specified as an integer.

<PolygonSymbolizer>
<Stroke>

<CssParameter name="stroke-width">5</CssParameter>
</Stroke>

</PolygonSymbolizer>

Figure 14: Polygon with stroke width of five (5) pixels

Polygon Stroke Opacity

The stroke opacity of a polygon is specified with a CssParameter element and stroke attribute inside
of a Stroke element. The opacity is specified as a floating point number between 0 and 1, with 0 being
completely transparent, and 1 being completely opaque.

458 Chapter 15. Google Earth

GeoServer User Manual, Release 2.1-RC4

<PolygonSymbolizer>
<Stroke>

<CssParameter name="stroke-opacity">0.5</CssParameter>
</Stroke>

</PolygonSymbolizer>

Figure 15.14: Figure 15: Polygon stroke opacity of 0.5 (50% opaque)

Polygon Fill Color

The fill color of a polygon is specified with a CssParameter element and fill attribute inside of a Fill
element. The color is specified as a six digit hexadecimal code:

<PolygonSymbolizer>
<Fill>

<CssParameter name="fill">#0000FF</CssParameter>
</Fill>

</PolygonSymbolizer>

15.3. KML Styling 459

GeoServer User Manual, Release 2.1-RC4

Figure 15.15: Figure 16: Polygon fill color of #0000FF (100% blue)

460 Chapter 15. Google Earth

GeoServer User Manual, Release 2.1-RC4

Polygon Fill Opacity

The fill opacity of a polygon is specified with a CssParameter element and fill-opacity attribute
inside of a Fill element. The opacity is specified as a floating point number between 0 and 1, with 0 being
completely transparent, and 1 being completely opaque.

<PolygonSymbolizer>
<Fill>

<CssParameter name="fill-opacity">0.5</CssParameter>
</Fill>

</PolygonSymbolizer>

Figure 15.16: Figure 17: Polygon fill opacity of 0.5 (50% opaque)

15.3.8 Text Labels

There are two ways to specify a label for a feature in Google Earth. The first is with Freemarker templates
(LINK?), and the second is with a TextSymbolizer. Templates take precedence over symbolizers.

15.3. KML Styling 461

GeoServer User Manual, Release 2.1-RC4

Freemarker Templates

Specifying labels via a Freemarker template involves creating a special text file called title.ftl
and placing it into the workspaces/<ws name>/<datastore name>/<feature type name> di-
rectory (inside the GeoServer data directory) for the dataset to be labeled. For example, to
create a template to label the states dataset by state name one would create the file here:
<data_dir>/workspaces/topp/states_shapefile/states/title.ftl. The content of the file
would be:

${STATE_NAME.value}

Figure 15.17: Figure 18: Using a Freemarker template to display the value of STATE_NAME

For more information on Placemark Templates, please see our full tutorial (LINK FORTHCOMING).

TextSymbolizer

In SLD labels are specified with the Label element of a TextSymbolizer. (Note the ogc: prefix on the
PropertyName element.)

462 Chapter 15. Google Earth

GeoServer User Manual, Release 2.1-RC4

<TextSymbolizer>
<Label>

<ogc:PropertyName>STATE_NAME</ogc:PropertyName>
</Label>

</TextSymbolizer>

Figure 15.18: Figure 19: Using a TextSymbolizer to display the value of STATE_NAME

The aspects of the resulting label which can be specified via a TextSymbolizer are color and opacity.

TextSymbolizer Color

The color of a label is specified with a CssParameter element and fill attribute inside of a Fill element.
The color is specified as a six digit hexadecimal code:

<TextSymbolizer>
<Label>

<ogc:PropertyName>STATE_NAME</ogc:PropertyName>
</Label>
<Fill>

15.3. KML Styling 463

GeoServer User Manual, Release 2.1-RC4

<CssParameter name="fill">#000000</CssParameter>
</Fill>

</TextSymbolizer>

Figure 15.19: Figure 20: TextSymbolizer with black text color (#000000)

TextSymbolizer Opacity

The opacity of a label is specified with a CssParameter element and fill-opacity attribute inside of a
Fill element. The opacity is specified as a floating point number between 0 and 1, with 0 being completely
transparent, and 1 being completely opaque.

<TextSymbolizer>
<Label>

<ogc:PropertyName>STATE_NAME</ogc:PropertyName>
</Label>
<Fill>

<CssParameter name="fill-opacity">0.5</CssParameter>
</Fill>

</TextSymbolizer>

464 Chapter 15. Google Earth

GeoServer User Manual, Release 2.1-RC4

Figure 15.20: Figure 21: TextSymbolizer with opacity 0.5 (50% opaque)

15.3. KML Styling 465

GeoServer User Manual, Release 2.1-RC4

15.3.9 Descriptions

When working with KML, each feature is linked to a description, accessible when the feature is clicked on.
By default, GeoServer creates a list of all the attributes and values for the particular feature.

It is possible to modify this default behavior. Much like with featureType titles, which are edited by creating
a title.ftl template, a custom description can be used by creating template called description.ftl
and placing it into the feature type directory (inside the GeoServer data directory) for the dataset. For
instance, to create a template to provide a description for the states dataset, one would create the file:
<data_dir>/workspaces/topp/states_shapefile/states/description.ftl. As an example,
if the content of the description template is:

This is the state of ${STATE_NAME.value}.

The resultant description will look like this:

It is also possible to create one description template for all featureTypes in a given
namespace. To do this, create a description.ftl file as above, and save it as
<data_dir>/templates/<workspace>/description.ftl. Please note that if a description
template is created for a specific featureType that also has an associated namespace description template,
the featureType template (i.e. the most specific template) will take priority.

One can also create more complex descriptions using a combination of HTML and the attributes of the data.
A full tutorial on how to use templates to create descriptions is available in our page on KML Placemark
Templates. (LINK?)

Basic SLD Creation Wizard SLD Structure Points Lines Polygons Text Labels Descriptions

15.4 Tutorials

15.4.1 KML Placemark Templates

Introduction

In KML a “Placemark” is used to mark a position on a map, often visualized with a yellow push pin. A
placemark can have a “description” which allows one to attach information to it. Placemark descriptions
are nothing more then an HTML snippet and can contain anything we want it to.

By default GeoServer produces placemark descriptions which are HTML tables describing all the attributes
available for a particular feature in a dataset. In the following image we see the placemark description for
the feature representing Idaho state:

This is great, but what about if one wanted some other sort of information to be conveyed in the description.
Or perhaps one does not want to show all the attributes of the dataset. The answer is Templates!!

A template is more or less a way to create some output.

Getting Started

First let us get set up. To complete the tutorial you will need the following:

• A GeoServer install

• A text editor

466 Chapter 15. Google Earth

GeoServer User Manual, Release 2.1-RC4

Figure 15.21: Figure 22: Default description for a feature

15.4. Tutorials 467

GeoServer User Manual, Release 2.1-RC4

Figure 15.22: Figure 23: A custom description

468 Chapter 15. Google Earth

GeoServer User Manual, Release 2.1-RC4

Figure 15.23: The default placemark

And thats it. For this tutorial we will assume that GeoServer is running the same configuration (data
directory) that it does out of the box.

Hello World

Ok, time to get to creating our first template. We will start off an extremely simple template which, you
guessed it, creates the placemark description “Hello World!”. So lets go.

1. Using the text editor of your choice start a new file called description.ftl

2. Add the following content to the file:

Hello World!

3. Save the file in the workspaces/topp/states_shapefile/states directory of your “data di-
rectory”. The data directory is the location of all the GeoServer configuration files. It is normally
pointed to by the environment variable GEOSERVER_DATA_DIR.

4. Start GeoServer is it is not already running.

And thats it. We can now test out our template by adding the following network link in google earth:

http://localhost:8080/geoserver/wms/kml?layers=states

And voila. Your first template

Refreshing Templates: One nice aspect of templates is that they are read upon every request. So one can
simply edit the template in place and have it picked up by Geoserver as soon as the file is saved. So when
after editing and saving a template simply “Refresh” the network link in Google Earth to have the new
content picked up.

As stated before template descriptions are nothing more than html. Play around with description.ftl
and add some of your own html. Some examples you may want to try:

1. A simple link to the homepage of your organization:

15.4. Tutorials 469

GeoServer User Manual, Release 2.1-RC4

Figure 15.24: Hello World template.

Provided by the The Open Planning Project.

Homepage of Topp

1. The logo of your organization:

Logo of Topp

The possibilities are endless. Now this is all great and everything but these examples are some what lacking
in that the content is static. In the next section we will create more realistic template which actually access
some the attributes of our data set.

Data Content

The real power of templates is the ability to easily access content, in the case of features this content is the
attributes of features.In a KML placemark description template, there are a number of “template variables”
available.

• The variable “fid”, which corresponds to the id of the feature

• The variable “typeName”, which corresponds to the name of the type of the feature

• A sequence of variables corresponding to feature attributes, each named the same name as the at-
tribute

So with this knowledge in hand let us come up with some more examples:

Simple fid/typename access:

470 Chapter 15. Google Earth

GeoServer User Manual, Release 2.1-RC4

Figure 15.25: Refresh Template

15.4. Tutorials 471

GeoServer User Manual, Release 2.1-RC4

Figure 15.26: Homepage of Topp

472 Chapter 15. Google Earth

GeoServer User Manual, Release 2.1-RC4

Figure 15.27: Logo of Topp

15.4. Tutorials 473

GeoServer User Manual, Release 2.1-RC4

This is feature ${fid} of type ${typeName}.

This is a feature of 3.1 of type states.

Figure 15.28: FID

Access to the values of two attributes named STATE_NAME, and PERSONS:

This is ${STATE_NAME.value} state which has a population of ${PERSONS.value}.

ID This is Idaho state which has a population of 1.006.749.

Attribute Variables

A feature attribute a “complex object” which is made up of three parts:

1. A value, given as a default string representation of the actual attribute value feasible to be used
directly

2. A rawValue, being the actual value of the attribute, to allow for more specialized customization
(for example, ${attribute.value?string("Enabled", "Disabled")} for custom represen-
tations of boolean attributes, etc).

3. A type, each of which is accessible via ${<attribute_name>.name},
${<attribute_name>.value}, ${<attribute_name>.rawValue},
${<attribute_name>.type} respectively. The other variables: fid, and typeName and are
“simple objects” which are available directly.

WMS Demo Example

We will base our final example off the “WMS Example” demo which ships with GeoServer. To check out
the demo visit http://localhost:8080/geoserver/popup_map/index.html in your web browser.

474 Chapter 15. Google Earth

http://localhost:8080/geoserver/popup_map/index.html

GeoServer User Manual, Release 2.1-RC4

Figure 15.29: Attributes

You will notice that hovering the mouse over one of the points on the map displays an image specific to
that point. Let us replicate this with a KML placemark description.

1. In the featureTypes/DS_poi_poi directory of the geoserver data directory create the following
template:

2. Add the following network link in Google Earth:

http://localhost:8080/geoserver/wms/kml_reflect?layers=tiger:poi

Poi.4

15.4.2 Heights Templates

Introduction

Height Templates in KML allow you to use an attribute of your data as the ‘height’ of features in Google
Earth.

Note: This tutorial assumes that GeoServer is running on http://localhost:8080.

Getting Started

For the purposes of this tutorial, you just need to have GeoServer with the release configura-
tion, and Google Earth installed. Google Earth is available for free from <http://earth.google.com/
<http://earth.google.com/>‘_.

15.4. Tutorials 475

http://localhost:8080
http://earth.google.com/
http://earth.google.com/

GeoServer User Manual, Release 2.1-RC4

Figure 15.30: WMS Example

Step One

By default GeoServer renders all features with 0 height, so they appear to lay flat on the world’s surface in
Google Earth.

To view the topp:states layer (packaged with all releases of GeoServer) in Google Earth, the easiest way
is to use a network link. In Google Earth, under Places, right-click on Temporary Places, and go to Add→
Network Link. In the dialog box, fill in topp:states as the Name, and the following URL as the Link:

http://localhost:8080/geoserver/wms/reflect?layers=topp:states&format=application/vnd.google-earth.kml+xml

Step Two

An interesting value to use for the height would be the population of each state (so that more populated
states appear taller on the map). We can do this by creating a file called height.ftl in the GeoServer
data directory under workspaces/topp/states_shapefile/states. To set the population value, we
enter the following text inside this new file:

${PERSONS.value}

This uses the value of the PERSONS attribute as the height for each feature. To admire our handiwork,
we can refresh our view by right-clicking on our temporary place (called topp:states) and selecting
Refresh:

476 Chapter 15. Google Earth

GeoServer User Manual, Release 2.1-RC4

Figure 15.31: topp:states in Google Earth

15.4. Tutorials 477

GeoServer User Manual, Release 2.1-RC4

Figure 15.32: Height by Population

478 Chapter 15. Google Earth

GeoServer User Manual, Release 2.1-RC4

Step Three

Looking at our population map, we see that California dwarfs the rest of the nation, and in general all of
the states are too tall for us to see the heights from a convenient angle. In order to scale things down to a
more manageable size, we can divide all height values by 100. Just change the template we wrote earlier to
read:

${PERSONS.value / 100}

Refreshing our view once again, we see that our height field has disappeared. Looking at the GeoServer
log (in the data directory under logs/geoserver.log) we see something like:

Caused by: freemarker.core.NonNumericalException: Error on line 1, column 3 in height.ftl
Expression PERSONS.value is not numerical

However, we know that the PERSONS field is numeric, even if it is declared in the shapefile as a string
value. To force a conversion, we can append ?number, like so:

${PERSONS.value?number / 100}

One final Refresh brings us to a nicely sized map of the US:

Figure 15.33: Scaled Height

15.4. Tutorials 479

GeoServer User Manual, Release 2.1-RC4

Step Four

There are still a couple of tweaks we can make. The default is to create a ‘solid’ look for features with
height, but Google Earth can also create floating polygons that are disconnected from the ground. To turn
off the ‘connect to ground’ functionality, add a format option called ‘extrude’ whose value is ‘false’. That
is, change the Link in the Network Link to be:

http://localhost:8080/geoserver/wms/reflect?layers=topp:states&format=application/vnd.google-earth.kml%2Bxml&format_options=extrude:false

We also have a few options for how Google Earth interprets the height field. By default, the height is
interpreted as relative to the ground, but we can also set the heights relative to sea level, or to be ignored
(useful for reverting to the ‘flat’ look without erasing your template). This is controlled with a format option
named altitudeMode, whose values are summarized below.

altitudeMode Purpose
altitudeMode Interpret height as relative to ground level
absolute Interpret height as relative to sea level
clampToGround Ignore height entirely

15.4.3 Time

Warning: The screenshots on this tutorial have not yet been updated for the 2.0.x user interface. But
most all the rest of the information should be valid, and the user interface is roughly the same, but a bit
more easy to use.

Getting Started

For this tutorial we will using a Shapefile which contains information about the number of Internet users
in the countries of Western Europe for a rang of years.

1. Download and unzip inet_weu.zip

2. Configure GeoServer to serve the Shapefile inet_weu.zip. (A tutorial is available Adding a Shape-
file.)

3. Add the SLD “inet_weu.sld to GeoServer. (A tutorial is available for Styling a Map)

4. Set the style of the feature type added in step 2 to the style added in step 3

Checking the Setup

If all is configured properly you should be able to navigate to
http://localhost:8080/geoserver/wms/kml?layers=topp:inet_weu&format=openlayers&bbox=-
33.780,26.266,21.005,56.427 and see the following map:

Creating the Template

Next we will create a template which allows us to specify the temporal aspects of the dataset. The schema
of our dataset looks like:

480 Chapter 15. Google Earth

http://localhost:8080/geoserver/wms/kml?layers=topp:inet_weu\&format=openlayers\&bbox=-33.780,26.266,21.005,56.427
http://localhost:8080/geoserver/wms/kml?layers=topp:inet_weu\&format=openlayers\&bbox=-33.780,26.266,21.005,56.427

GeoServer User Manual, Release 2.1-RC4

Figure 15.34: Style

Figure 15.35: Setup

15.4. Tutorials 481

GeoServer User Manual, Release 2.1-RC4

INET_P100n Number of internet users per 100 people
NAME Name of country
RPT_YEAR Year
Geometry Polygon representing the country

The temporal attribute is RPT_YEAR and is the one that matters to us. Ok, time to create the template.

1. In your text editor of choice, create a new text file called time.ftl.

2. Add the following text:

${RPT_YEAR.value?date(’yyyy’)}

1. Save the file to the <GEOSERVER_DATA_DIR>/workspaces/topp/inet_weu_shapefile/inet_weu
directory. Where <GEOSERVER_DATA_DIR> is the location of the “data directory” of your GeoServer
installation. Usually pointed to via the GEOSERVER_DATA_DIR environment variable.

See the ref:references section for more information about specifying a date format.

Trying it Out

Ok time to try it out.

1. Navigate to http://localhost:8080/geoserver/wms/kml_reflect?layers=inet_weu&legend=true. This
should cause Google Earth to open.

1. In Google Earth, adjust the time bar so that it captures a time interval that is approximately 1 year
wide

1. Slide the time bar forward in time and notice how the polygon colors change

References

Specifying a Date Format

When setting up a time template for your own dataset the most important issue is the format of your
temporal data. It may or may not be in a format in which GeoServer can read directly. You can check if
the date/time format can be used directly by GeoServer by using the following time template. This is an
example time template file (time.ftl) file without explicit formatting.

${DATETIME_ATTRIBUTE_NAME.value}

While GeoServer will try its best to parse the data there are cases in which your data is in a format which it
cannot parse. When this occurs it is necessary to explicitly specify the format. Luckily Freemarker provides
us with functionality to do just this.

Consider the date time 12:30 on January 01, 2007 specified in the following format:
01?01%2007&12$30!00. When creating the template we need to explicitly tell Freemarker the for-
mat the date time is in with the datetime function. This is an example time template file (time.ftl) file with
explicit formatting:

${DATETIME_ATTRIBUTE_NAME.value?datetime("M?d%y&H:m:s")}

The process is similar for dates (no time). The date 01?01%2007 would be specified in a template with
explicit formatting:

482 Chapter 15. Google Earth

http://localhost:8080/geoserver/wms/kml_reflect?layers=inet_weu\&legend=true

GeoServer User Manual, Release 2.1-RC4

Figure 15.36: Google Earth

Figure 15.37: Google Earth Time Bar

15.4. Tutorials 483

GeoServer User Manual, Release 2.1-RC4

Figure 15.38: Sliding the Time Bar

484 Chapter 15. Google Earth

GeoServer User Manual, Release 2.1-RC4

${DATETIME_ATTRIBUTE_NAME.value?date("M?d%y")}

So when must you specify the date format in this manner? The following table illustrates the date formats
that GeoServer can understand. Note that the ‘-‘ character can be one of any of the following characters: ‘/’
(forward slash), ‘ ‘ (space), ‘.’ (period), ‘,’ (comma)

Date Format Example
yyyy-MM-dd 2007-06-20
yyyy-MMM-dd 2007-Jun-20
MM-dd-yyyy 06-20-2007
MMM-dd-yyyy Jun-20-2007
dd-MM-yyyy 20-06-2007
dd-MMM-yyyy 20-Jun-2007

The set of date time formats which GeoServer can be understand is formed by appending the timestamp
formats hh:mm and hh:mm:ss to the entries in the above table:

DateTime Format Example
yyyy-MM-dd hh:mm 2007-06-20 12:30
yyyy-MMM-dd hh:mm 2007-Jun-20 12:30
yyyy-MM-dd hh:mm:ss 2007-06-20 12:30:00
yyyy-MMM-dd hh:mm:ss 2007-Jun-20 12:30:00

Warning: Setting the Timezone
Be aware that the KML output for date time formats will reflect the timezone of the java virtual machine,
which can be set using the user.timezone parameter in the startup script. For example, the following
command starts GeoServer using the Coordinated Universal Time (UTC) timezone.

exec "$_RUNJAVA" -DGEOSERVER_DATA_DIR="$GEOSERVER_DATA_DIR"
-Djava.awt.headless=true -DSTOP.PORT=8079 -Duser.timezone=UTC
-DSTOP.KEY=geoserver -jar start.jar

If the timezone is not set, it will default to the timezone of the operating system.

Specifying a Date Range

In the above example a single time stamp is output for the dataset. GeoServer also supports specifying date
ranges via a template. The syntax for ranges is:

Where begin is the first date in the range, end is the last date in the range, and || is the delimiter between
the two. As an example:

Would the date range starting at January 1, 2007 and ending June 1, 2007. Date ranges can also be
open ended:

The first date specifies a date range where the beginning is open-ended. The second specifies a date range
where the end is open-ended.

15.4.4 Super-Overlays and GeoWebCache

Overview

This tutorial explains how to use GeoWebCache (GWC) to enhance the performance of super-overlays in
Google Earth. For more information please see the page on KML Super-Overlays

15.4. Tutorials 485

http://geowebcache.org

GeoServer User Manual, Release 2.1-RC4

Conveniently GeoWebCache can generate super-overlays automatically. With the standalone GeoWeb-
Cache it takes minimal amount of configuration. Please see the GeoWebCache documentation for more
information on the standalone version of GeoWebCache.

We are going to use the plug in version of GeoWebCache where there is no configuration need. For this
tutorial we are also using the topp:states layer. Using the GeoWebCache plug in with super-overlays

To access GWC from GeoServer go to http://localhost:8080/geoserver/gwc/demo/. This should return a
layer list of similar to below.

To use a super-overlay in GeoWebCache select the KML (vector) option display for each layer. Lets select
topp:states.The url would be http://localhost:8080/geoserver/gwc/service/kml/topp:states.kml.kmz Af-
ter doing so you will be presented with a open option dialog, choose Google Earth.

When Google Earth finishes loading you should be viewing a the topp:states layers.

15.4.5 Super-Overlays and Extrudes with Building Data

15.5 Features

This section delves into greater detail about the various functionality and options possible with KML output
and Google Earth.

15.5.1 KML Reflector

Standard WMS requests can be quite long and cumbersome. The following is an example of a request for
KML output from GeoServer:

http://localhost:8080/geoserver/ows?service=WMS&request=GetMap&version=1.1.1&format=application/vnd.google-earth.kml+XML&width=1024&height=1024&srs=EPSG:4326&layers=topp:states&styles=population&bbox=-180,-90,180,90

GeoServer includes an alternate way of requesting KML, and that is to use the KML reflector. The KML
reflector is a simpler URL-encoded request that uses sensible defaults for many of the parameters in a
standard WMS request. Using the KML reflector one can shorten the above request to:

486 Chapter 15. Google Earth

http://geowebcache.org/trac/wiki/configuration
http://localhost:8080/geoserver/gwc/demo/

GeoServer User Manual, Release 2.1-RC4

15.5. Features 487

GeoServer User Manual, Release 2.1-RC4

http://localhost:8080/geoserver/wms/kml?layers=topp:states

Using the KML reflector

The only mandatory parameter is the layers parameter. The syntax is as follows:

http://GEOSERVER_URL/wms/kml?layers=<layer>

where GEOSERVER_URL is the URL of your GeoServer instance, and <layer> is the name of the feature-
type to be served.

The following table lists the default assumptions:

Key Value
request GetMap
service wms
version 1.1.1
srs EPSG:4326
format applcation/vnd.google-earth.kmz+xml
width 256
height 256
bbox <layer bounds>
kmattr true
kmplacemark false
kmscore 50
styles [default style for the featuretype]

Any of these defaults can be changed when specifying the request. For instance, to specify a particular
style, one can append styles=population to the request:

http://localhost:8080/geoserver/wms/kml?layers=topp:states&styles=population

To specify a different bounding box, append the parameter to the request:

http://localhost:8080/geoserver/wms/kml?layers=topp:states&bbox=-124.73,24.96,-66.97,49.37

Reflector modes

The KML reflector can operate in one of three modes: refresh, superoverlay, and download.

The mode is set by appending the following parameter to the URL:

mode=<mode>

where <mode> is one of the three reflector modes. The details for each mode are as follows:

488 Chapter 15. Google Earth

GeoServer User Manual, Release 2.1-RC4

Mode Description
refresh (default for all versions except 1.7.1 through 1.7.5) Returns dynamic KML that can be

refreshed/updated by the Google Earth client. Data is refreshed and new data/imagery is
downloaded when zooming/panning stops. This mode can return either vector or raster
(placemark or overlay) The decision to return either vector or raster data is determined by
the value of kmscore. Please see the section on KML Scoring for more information.

superoverlay(default for versions 1.7.1 through 1.7.5) Returns KML as a super-overlay. A super-overlay is a
form of KML in which data is broken up into regions. Please see the section on KML
Super-Overlays for more information.

download Returns KML which contains the entire data set. In the case of a vector layer, this will
include a series of KML placemarks. With raster layers, this will include a single KML
ground overlay. This is the only mode that doesn’t dynamically request new data from the
server, and thus is self-contained KML.

More about the “superoverlay” mode

When requesting KML using the superoverlay mode, there are four additional submodes available re-
garding how and when data is requested. These options are set by appending the following parameter to
the KML reflector request:

superoverlay_mode=<submode>

where <submode> is one of the following options:

Sub-
mode

Description

auto (default) Always returns vector features if the original data is in vector form, and returns raster
imagery if the original data is in raster form. This can sometimes be less than optimal if the
geometry of the features are very complicated, which can slow down Google Earth.

raster Always returns raster imagery, regardless of the original data. This is almost always faster,
but all vector information is lost in this view.

overviewDisplays either vector or raster data depending on the view. At higher zoom levels, raster
imagery will be displayed, and at lower zoom levels, vector features will be displayed. The
determination for when to switch between vector and raster is made by the regionation
parameters set on the server. See the section on KML Regionation for more information.

hybrid Displays both raster and vector data at all times.

15.5.2 Toggling Placemarks

Vector Placemarks

When GeoServer generates KML for a vector dataset, it attaches information from the data to each feature
that is created. When clicking on a vector feature, a pop-up window is displayed. This is called a placemark.
By default this is a simple list which displays attribute data, although this information can be customized
using Freemarker templates.

If you would like this information not to be shown when a feature is clicked (either for security reasons, or
simply to have a cleaner user interface), it is possible to disable this functionality. To do so, use the kmattr
parameter in a KML request to turn off attribution.

The syntax for kmattr is as follows:

format_options=kmattr:[true|false]

15.5. Features 489

GeoServer User Manual, Release 2.1-RC4

Note that kmattr is a “format option”, so the syntax is slightly different from the usual key-value pair. For
example:

http://localhost:8080/geoserver/wms/kml?layers=topp:states&format_options=kmattr:false

Raster Placemarks

Unlike vector features, where the placemark is enabled by default, placemarks are disabled by default with
raster images of features. To enable this feature, you can use the kmplacemark format option in your KML
request. The syntax is similar to the kmattr format option specified above:

format_options=kmplacemark:[true|false]

For example, using the KML reflector, the syntax would be:

http://localhost:8080/geoserver/wms/kml?layers=topp:states&format_options=kmplacemark:true

15.5.3 Customizing Placemarks

KML output can leverage some powerful visualization abilities in Google Earth. Titles can be displayed
on top of the features. Descriptions (custom HTML shown when clicking on a feature) can be added
to customize the views of the attribute data. In addition, using Google Earth’s time slider, time-based
animations can be created. Finally, height of features can be set, as opposed to the default ground overlay.
All of these can be accomplished by creating Freemarker templates. Freemarker templates are text files
(with limited HTML code), saved in the GeoServer Data Directory, that utilize variables that link to specific
attributes in the data.

Titles

Specifying labels via a template involves creating a special text file called title.ftl and placing it
into the featuretypes directory inside the GeoServer Data Directory for the dataset to be labeled. For
instance, to create a template to label the states layer by state name, one would create the file:
<data_dir>/workspaces/topp/states_shapefile/states/title.ftl. The content of the file
would be:

${STATE_NAME.value}

Descriptions

When working with KML, each feature is linked to a description, accessible when the feature is clicked on.
By default, GeoServer creates a list of all the attributes and values for the particular feature.

It is possible to modify this default behavior. Much like with featuretype titles, which are edited by cre-
ating a title.ftl template, specifying descriptions via a template involves creating a special text file
called description.ftl and placing it into the featuretypes directory inside the GeoServer Data Di-
rectory for the dataset to be labeled. For instance, a sample description template would be saved here:
<data_dir>/workspaces/topp/states_shapefile/states/description.ftl. The content of
the file could be:

This is the state of ${STATE_NAME.value}.

490 Chapter 15. Google Earth

GeoServer User Manual, Release 2.1-RC4

The resulting description will look like this:

Warning: Add SS: A custom description

It is also possible to create one description template for all layers in a given namespace. To do this, create a
description.ftl file as above, and save it here:

<data_dir>/templates/<namespace>/description.ftl.

Please note that if a description template is created for a specific layer that also has an associated namespace
description template, the layer template (i.e. the most specific template) will take priority.

15.5.4 KML Height and Time

Height

GeoServer by default creates two dimensional overlays in Google Earth. However, GeoServer can output
features with height information (also called “KML extrudes”) if desired. This can have the effect of having
features “float” above the ground, or create bar graph style structures in the shape of the features. The
height of features can be linked to an attribute of the data.

Setting the height of features is determined by using a KML Freemarker template. Create a file
called height.ftl, and save it in the same directory as the featuretype in your GeoServer Data Di-
rectory. For example, to create a height template for the states layer, the file should be saved in
<data_dir>/workspaces/topp/states_shapefile/states/height.ftl.

To set the height based on an attribute, the syntax is:

${ATTRIBUTE.value}

Replace the word ATTRIBUTEwith the name of the height attribute in your data set. For a complete tutorial
on working with the height templates see Heights Templates.

Time

Google Earth also contains a “time slider”, which can allow animations of data, and show changes over
time. As with height, time can be linked to an attribute of the data, as long as the data set has a date/time
attribute. Linking this date/time attribute to the time slider in Google Earth is accomplished by creating a
Freemarker template. Create a file called time.ftl, and save it in the same directory that contains your
data’s info.xml.

To set the time based on an attribute the syntax is:

${DATETIME_ATTRIBUTE.value}

Replace the word DATETIME_ATTRIBUTE with the name of the date/time attribute. When creating KML,
GeoServer will automatically link the data to the time element in Google Earth. If set successfully, the time
slider will automatically appear.

For a full tutorial on using GeoServer with Google Earth’s time slider see Time

15.5. Features 491

GeoServer User Manual, Release 2.1-RC4

15.5.5 KML Legends

WMS includes a GetLegendGraphic operation which allows a WMS client to obtain a legend graphic
from the server for a particular layer. Combining the legend with KML overlays allows the legend to be
viewed inside Google Earth.

To get GeoServer to include a legend with the KML output, append legend=true to the KML reflector
request. For example:

http://localhost:8080/geoserver/wms/kml?layers=topp:states&legend=true

The resulting Google Earth output looks like this:

15.5.6 Filters

Though not specific to Google Earth, GeoServer has the ability to filter data returned from the Web Map
Service. The KML Reflector will pass through any WMS filter or cql_filter parameter to GeoServer

492 Chapter 15. Google Earth

GeoServer User Manual, Release 2.1-RC4

to constrain the response.

Note: Filters are basically a translation of a SQL “WHERE” statement into web form. Though limited to
a single table, this allows users to do logical filters like “AND” and “OR” to make very complex queries,
leveraging numerical and string comparisons, geometric operations (“bbox”, “touches”, “intersects”, “dis-
joint”), “LIKE” statements, nulls, and more.

Filter

There simplest filter is very easy to include. It is called the featureid filter, and it lets you filter to a single
feature by its ID. The syntax is:

featureid=<feature>

where <feature> is the feature and its ID. An example would be:

http://localhost:8080/geoserver/wms/kml_reflect?layers=topp:states&featureid=states.5

This request will output only the state of Maryland. The feature IDs of your data are most easily found by
doing WFS or KML requests and examining the resulting output.

CQL Filter

Using filters in a URL can be very unwieldy, as one needs to include URL-encoded XML:

http:/localhost:8080/geoserver/wms/kml_reflect?layers=topp:states&FILTER=%3CFilter%3E%3CPropertyIsBetween%3E%3CPropertyName%3Etopp:LAND_KM%3C/PropertyName%3E%3CLowerBoundary%3E%3CLiteral%3E100000%3C/Literal%3E%3C/LowerBoundary%3E%3CUpperBoundary%3E%3CLiteral%3E150000%3C/Literal%3E%3C/UpperBoundary%3E%3C/PropertyIsBetween%3E%3C/Filter%3E

Instead, one can use Common Query Language (CQL), which allows one to specify the same statement
more succinctly:

http://localhost:8080/geoserver/wms/kml?layers=topp:states&CQL_FILTER=LAND_KM+BETWEEN+100000+AND+150000

This query will return all the states in the US with areas between 100,000 and 150,000 km^2.

15.5.7 KML Super-Overlays

Super-overlays are a form of KML in which data is broken up into regions. This allows Google Earth to
refresh/request only particular regions of the map when the view area changes. Super-overlays are used to
efficiently publish large sets of data. (Please see Google’s page on super-overlays for more information.)

GeoServer supports two types of super-overlays: raster and vector. With raster super-overlays, GeoServer
intelligently produces imagery appropriate to the current zoom level and dynamically outputs new im-
agery when the zoom level changes. With vector super-overlays, feature data is requested for only the
visible features and new features are dynamically loaded as necessary. Raster super-overlays require less
resources on the client, but vector super-overlays have a higher output quality.

When using the KML Reflector, super-overlays are enabled by default, whether the data in question is raster
or vector. For more information on the various options for KML super-overlay output, please see the page
on the KML Reflector.

15.5. Features 493

http://code.google.com/apis/kml/documentation/kml_21tutorial.html#superoverlays

GeoServer User Manual, Release 2.1-RC4

Raster Super-Overlays

Consider this image, which is generated from GeoServer. When zoomed out, the data is at a small size.

When zooming in, the image grows larger, but since the image is at low resolution (orignially designed to
be viewed small), the quality degrades.

However, in a super-overlay, the KML document requests a new image from GeoServer of a higher reso-
lution for that zoom level. As the new image is downloaded, the old image is replaced by the new image.

494 Chapter 15. Google Earth

GeoServer User Manual, Release 2.1-RC4

Raster Super-Overlays and GeoWebCache

GeoServer implements super-overlays in a way that is compatible with the WMS Tiling Client Recommen-
dation. Super-overlays are generated such that the tiles of the super-overlay are the same tiles that a WMS
tiling client would request. One can therefore use existing tile caching mechanisms and reap a potentially
large performance benefit.

The easiest way to tile cache a raster super overlay is to use GeoWebCache which is built into GeoServer:

http://GEOSERVER_URL/gwc/service/kml/<layername>.<imageformat>.kmz

where GEOSERVER_URL is the URL of your GeoServer instance.

Vector Super-Overlays

GeoServer can include the feature information directly in the KML document. This has lots of benefits. It
allows the user to select (click on) features to see descriptions, toggle the display of individual features, as
well as have better rendering, regardless of zoom level. For large datasets, however, the feature information
can take a long time to download and use a lot of client-side resources. Vector super-overlays allow the
client to only download part of a dataset, and request more features as necessary.

Vector super-overlays can use the process of KML Regionation to organize features into a hierarchy. The
regionation process can operate in a variety of modes. Most of the modes require a “regionation attribute”
which is used to determine which features should be visible at a particular zoom level. Please see the KML
Regionation page for more details.

15.5. Features 495

GeoServer User Manual, Release 2.1-RC4

Vector Super-Overlays and GeoWebCache

As with raster super-overlays, it is possible to cache vector super-overlays using GeoWebCache. Below is
the syntax for generating a vector super-overlay KML document via GeoWebCache:

http://GEOSERVER_URL/gwc/service/kml/<layername>.kml.kmz

where GEOSERVER_URL is the URL of your GeoServer instance.

Unlike generating a super-overlay with the standard KML Reflector, it is not possible to specify the region-
ation properties as part of the URL. These parameters must be set in the Layers configuration which can be
navigated to by clicking on ‘Layers’ in the left hand sidebar and then selecting your vector layer.

15.5.8 KML Regionation

Displaying vector features on Google Earth is a very powerful way of creating nicely-styled maps. How-
ever, it is not always optimal to display all features at all times. Displaying too many features can create
an unsightly map, and can adversely affect Google Earth’s performance. To combat this, GeoServer’s KML
output includes the ability to limit features based on certain criteria. This process is known as regionation.
Regionation is active by default when using the superoverlay KML reflector mode.

Regionation Attributes

The most important aspect of regionation is to decide how to determine which features show up more
prominently than others. This can be done either by geometry, or by attribute. One should choose the
option that best exemplifies the relative “importance” of the feature. When choosing to regionate by geom-
etry, only the larger lines and polygons will be displayed at higher zoom levels, with smaller ones being
displayed when zooming in. When regionating by an attribute, the higher value of this attribute will make
those features show up at higher zoom levels. (Choosing an attribute with a non-numeric value will be
ignored, and will instead default to regionation by geometry.)

Regionation Strategies

Regionation strategies sets how to determine which features should be shown at any given time or zoom
level. There are five types of regionation strategies:

Strategy Description
best_guess (default) The actual strategy is determined by the type of data being operated on. If the

data consists of points, the random strategy is used. If the data consists of lines or
polygons, the geometry strategy is used.

external-sortingCreates a temporary auxiliary database within GeoServer. It takes slightly extra time to
build the index upon first request.

native-sortingUses the default sorting algorithm of the backend where the data is hosted. It is faster
than external-sorting, but will only work with PostGIS datastores.

geometry Externally sorts by length (if lines) or area (if polygons).
random Uses the existing order of the data and does not sort.

In most cases, the best_guess strategy is sufficient.

Setting Regionation Parameters

Regionation strategies and attributes are featuretype-specific, and therefore are set in the Layers editing
page of the Web Administration Interface. This can be navigated to by selecting ‘Layers’ on the left sidebar.

496 Chapter 15. Google Earth

GeoServer User Manual, Release 2.1-RC4

15.5.9 KML Scoring

Note: KML scoring only applies when using the super-overlay mode refresh. See KML Super-Overlays
for more information.

GeoServer can return KML in one of two forms. The first is as a number of placemark elements (vec-
tors). Each placemark corresponds to a feature in the underlying dataset. This form only applies to vector
datasets.

The second form is as an overlay (image). In this form the rendering is done by the GeoServer WMS and
only the resulting graphic is sent to Google Earth. This is the only form available for raster datasets, but
can be applied to vector datasets as well.

There are advantages to and disadvantages to each output mode when rendering vector data. Placemarks
look nicer, but there can be performance problems with Google Earth if the data set is large. Overlays put
less of a strain on Google Earth, but aren’t as nice looking.

The following shows the same dataset rendered in Placemark form on the top and Overlay form on the
bottom.

KML scoring is the process of determing whether to render features as rasters or as vectors.

15.5. Features 497

GeoServer User Manual, Release 2.1-RC4

498 Chapter 15. Google Earth

GeoServer User Manual, Release 2.1-RC4

The kmscore attribute

GeoServer makes the determination on whether to render a layer as raster or vector based on how many
features are in the data set and an attribute called kmscore. The kmscore attribute determines the maxi-
mum amount of vector features rendered. It is calculated by this formula:

maximum number of features = 10^(kmscore/15)

The following table shows the values of this threashold for various values of the kmscore parameter:

kmscore Maximum # of features
0 Force overlay/raster output
10 4
20 21
30 100
40 Approx. 450
50 (default) Approx. 2150
60 Approx. 10,000
70 Approx. 45,000
80 Approx. 200,000
90 Approx. 1,000,000
100 Force placemark/vector output

The syntax for specifying kmscore is:

kmscore=<value>

where <value> is an integer between 0 and 100. For example:

http://localhost:8080/geoserver/wms/kml?layers=topp:states&mode=refresh&kmscore=20

The kmscore attribute will be ignored if using a reflector mode other than refresh.

15.5. Features 499

GeoServer User Manual, Release 2.1-RC4

500 Chapter 15. Google Earth

CHAPTER 16

Extensions

Extensions are modules that add various bits of functionality to GeoServer. They need to be installed
separately from GeoServer.

This section describes the various extensions available to GeoServer. For information about extensions that
add support for additional data formats, such as ArcSDE or SQL Server, see the Working with Data section.

16.1 GeoSearch

16.1.1 GeoSearch Indexing Module

The GeoSearch indexing module adds support to GeoServer for exposing your data to Google’s GeoSearch.
This makes it so more people can find your data, by searching directly on Google Maps or Google Earth.
The format exposed is KML, so other search engines will also be able to crawl it when they are ready -
Google is just the first to support it for sure. By default no data is published, but we highly encourage you
to if your data can be publicly available, to help grow the wider geospatial web. Publishing is easy, as it is
a part of the administration interface. For more information about geosearch see this blog.

16.1.2 How It Works

The GeoSearch module adds a sitemap.xml endpoint in the GeoServer REST API; that is,
http://localhost:8080/geoserver/rest/sitemap.xml is your sitemap. By submitting the sitemap
through Google’s webmaster tools, you can get your map layers to show up in searches on
http://maps.google.com/.

16.1.3 Step By Step

A more explicit guide to using the GeoSearch module follows.

1. Load your data as normal.

2. Go to the Layer configuration page in GeoServer’s admin console for each layer you would like to
expose, and check the ‘enable searching’ checkbox on the Publishing tab.

501

http://googlemapsapi.blogspot.com/2008/05/geo-search-20-data-in-data-out.html
http://localhost:8080/geoserver/rest/sitemap.xml
http://maps.google.com/

GeoServer User Manual, Release 2.1-RC4

3. Submit your sitemap.xml using Google’s webmaster tools. From your dashboard, pick the do-
main on which your server lives. In the menu on the left, click on “Sitemaps” and then
“Add Sitemap”. You are adding a “General Web Sitemap”, and provide the URL equivalent
http://localhost:8080/geoserver/rest/sitemap.xml .

The reason we are using “General Web Sitemap”, as opposed to a “Geo Sitemap”, is that sitemap.xml is
really a sitemap index that links to a geo sitemap for each layer.

16.1.4 Behind the Scenes

GeoServer already has support for breaking up a dataset into regionated tiles. The information about what
features belong in each tile is stored in an H2 database in $GEOSERVER_DATA_DIR/geosearch . We use
this information when creating the sitemaps for Google. However, since the hierarchy may not be fully
explored by the time a sitemap is submitted, the sitemaps also contain links to tiles deeper in the hierarchy,
thereby expanding it. Some of these tiles may be empty, in which case Googlebot will receive a 204 response.

16.1.5 Big datasets

If you are making big datasets available, more than 50 000 individual features, up to 2,000,000, you should
consider doing the following. The main burden is to sort the features according to an attribute, so that they
are output in order of importance and included in exactly one tile.

1. Use a backend that supports queries, such as Postgis. You can use shp2psql to convert from a Shapefile
to a SQL format supported by Postgis. Be sure to specify that you want a GIST (geospatial index) to
be created, and provide the SRS. (-I and -s)

2. Make sure your database has a primary index (an auto-incrementing integer is fine) and a spatial
index on the geometry column

3. Put an index on the column that you are going to sort the feature by. If you are using the size of
the geometry, consider making an auxilliary column that contains the precalculated value and put
an index on that. Note that GeoServer always sorts in descending order, so features you consider
important should have a high value.

4. In GeoServer’s feature type configuration, be sure to use “native-sorting” for the regionating strategy,
and your chosen column as the regionating attribute.

5. KML Feature Limit should generally be set to 50. It’s a balancing act between too much information
per tile (Googlebot prefers document that are less than 1 megabyte) and a big hierarchy that takes
long to build.

16.2 Imagemap

HTML ImageMaps have been used for a long time to create interactive images in a light way. Without using
Flash, SVG or VML you can simply associate different links or tooltips to different regions of an image. Why
can’t we use this technique to achieve the same result on a GeoServer map? The idea is to combine a raster
map (png, gif, jpeg, ...) with an HTML ImageMap overlay to add links, tooltips, or mouse events behavior
to the map.

An example of an ImageMap adding tooltips to a map:

<map name="mymap">

<area shape="poly" coords="536,100 535,100 534,101 533,101 532,102" title="This is a tooltip"/>

502 Chapter 16. Extensions

http://localhost:8080/geoserver/rest/sitemap.xml

GeoServer User Manual, Release 2.1-RC4

<area shape="poly" coords="518,113 517,114 516,115 515,114" title="Another tooltip"/>
</map>

An example of an ImageMap adding links to a map:

<map name="mymap">

<area shape="poly" coords="536,100 535,100 534,101 533,101 532,102" href="http://www.mylink.com"/>
<area shape="poly" coords="518,113 517,114 516,115 515,114" href="http://www.mylink2.com"/>

</map>

A more complex example adding interactive behaviour on mouse events:

<map name="mymap">

<area shape="poly" coords="536,100 535,100 534,101 533,101 532,102" onmouseover="onOver(’<featureid>’)" onmouseout="onOut(’<featureid>’)"/>
<area shape="poly" coords="518,113 517,114 516,115 515,114" onmouseover="onOver(’<featureid>’)" onmouseout="onOut(’<featureid>’)"/>

</map>

To realize this in GeoServer some great community contributors developed an HTMLImageMap GetMap-
Producer for GeoServer, able to render an HTMLImageMap in response to a WMS GetMap request.

The GetMapProducer is associated to the text/html mime type. It produces, for each requested layer, a
<map>...</map> section containing the geometries of the layer as distinct <area> tags. Due to the limita-
tions in the shape types supported by the <area> tag, a single geometry can be split into multiple ones. This
way almost any complex geometry can be rendered transforming it into simpler ones.

To add interactive attributes we use styling. In particular, an SLD Rule containing a TextSymbolizer with a
Label definition can be used to define dynamic values for the <area> tags attributes. The Rule name will be
used as the attribute name.

As an example, to define a title attribute (associating a tooltip to the geometries of the layer) you can use a
rule like the following one:

<Rule>
<Name>title</Name>
<TextSymbolizer>

<Label><PropertyName>MYPROPERTY</PropertyName></Label>
</TextSymbolizer>

</Rule>

To render multiple attributes, just define multiple rules, with different names (href, onmouseover, etc.)

Styling support is not limited to TextSymbolizers, you can currently use other symbolizers to detail <area>
rendering. For example you can:

• use a PointSymbolizer with a Size property to define point sizes.

• use LineSymbolizer with a stroke-width CssParameter to create thick lines.

16.3 OGR based WFS Output Format

The ogr2ogr based output format leverages the availability of the ogr2ogr command to allow the generation
of more output formats than GeoServer can natively produce. The basics idea is to dump to the file system
a file that ogr2ogr can translate, invoke it, zip and return the output of the translation.

16.3. OGR based WFS Output Format 503

GeoServer User Manual, Release 2.1-RC4

16.3.1 Out of the box behaviour

Out of the box the plugin assumes the following:

• ogr2ogr is available in the path

• the GDAL_DATA variable is pointing to the GDAL data directory (which stores the spatial reference
information for GDAL)

In the default configuration the following formats are supported:

• MapInfo in TAB format

• MapInfo in MIF format

• Un-styled KML

• CSV (without geometry data dumps)

The list might be shorter if ogr2ogr has not been built with support for the above formats.

Once installed in GeoServer four new GetFeature output formats will be available, in particular, OGR-TAB,
OGR-MIF, OGR-KML, OGR-CSV.

16.3.2 ogr2ogr conversion abilities

The ogr2ogr utility is usually able to convert more formats than the default setup of this output format
allows for, but the exact list depends on how the utility was built from sources. To get a full list of the
formats available by your ogr2ogr build just run:

ogr2ogr --help

and you’ll get the full set of options usable by the program, along with the supported formats. For example,
the above produces the following output using the FWTools 2.2.8 distribution (which includes ogr2ogr
among other useful information and conversion tools):

Usage: ogr2ogr [--help-general] [-skipfailures] [-append] [-update] [-gt n]
[-select field_list] [-where restricted_where]
[-sql <sql statement>]
[-spat xmin ymin xmax ymax] [-preserve_fid] [-fid FID]
[-a_srs srs_def] [-t_srs srs_def] [-s_srs srs_def]
[-f format_name] [-overwrite] [[-dsco NAME=VALUE] ...]
[-segmentize max_dist]
dst_datasource_name src_datasource_name
[-lco NAME=VALUE] [-nln name] [-nlt type] [layer [layer ...]]

-f format_name: output file format name, possible values are:
-f "ESRI Shapefile"
-f "MapInfo File"
-f "TIGER"
-f "S57"
-f "DGN"
-f "Memory"
-f "BNA"
-f "CSV"
-f "GML"
-f "GPX"
-f "KML"
-f "GeoJSON"

504 Chapter 16. Extensions

GeoServer User Manual, Release 2.1-RC4

-f "Interlis 1"
-f "Interlis 2"
-f "GMT"
-f "SQLite"
-f "ODBC"
-f "PostgreSQL"
-f "MySQL"
-f "Geoconcept"

-append: Append to existing layer instead of creating new if it exists
-overwrite: delete the output layer and recreate it empty
-update: Open existing output datasource in update mode
-select field_list: Comma-delimited list of fields from input layer to

copy to the new layer (defaults to all)
-where restricted_where: Attribute query (like SQL WHERE)
-sql statement: Execute given SQL statement and save result.
-skipfailures: skip features or layers that fail to convert
-gt n: group n features per transaction (default 200)
-spat xmin ymin xmax ymax: spatial query extents
-segmentize max_dist: maximum distance between 2 nodes.

Used to create intermediate points
-dsco NAME=VALUE: Dataset creation option (format specific)
-lco NAME=VALUE: Layer creation option (format specific)
-nln name: Assign an alternate name to the new layer
-nlt type: Force a geometry type for new layer. One of NONE, GEOMETRY,

POINT, LINESTRING, POLYGON, GEOMETRYCOLLECTION, MULTIPOINT,
MULTIPOLYGON, or MULTILINESTRING. Add "25D" for 3D layers.
Default is type of source layer.

-a_srs srs_def: Assign an output SRS
-t_srs srs_def: Reproject/transform to this SRS on output
-s_srs srs_def: Override source SRS

Srs_def can be a full WKT definition (hard to escape properly),
or a well known definition (ie. EPSG:4326) or a file with a WKT
definition.

The full list of formats that ogr2ogr is able to support is available on the OGR site. Mind that this output
format can handle only outputs that are file based and that do support creation. So, for example, you won’t
be able to use the Postgres output (since it’s database based) or the ArcInfo binary coverage (creation not
supported).

16.3.3 Customisation

If ogr2ogr is not available in the default path, the GDAL_DATA is not set, or if the output formats needs
tweaking, a ogr2ogr.xml file can be put in the root of the GeoServer data directory to customize the
output format.

The default GeoServer configuration is equivalent to the following xml file:

<OgrConfiguration>
<ogr2ogrLocation>ogr2ogr</ogr2ogrLocation>
<!-- <gdalData>...</gdalData> -->
<formats>
<Format>

<ogrFormat>MapInfo File</ogrFormat>
<formatName>OGR-TAB</formatName>
<fileExtension>.tab</fileExtension>

16.3. OGR based WFS Output Format 505

http://www.gdal.org/ogr2ogr.html

GeoServer User Manual, Release 2.1-RC4

</Format>
<Format>

<ogrFormat>MapInfo File</ogrFormat>
<formatName>OGR-MIF</formatName>
<fileExtension>.mif</fileExtension>
<option>-dsco</option>
<option>FORMAT=MIF</option>

</Format>
<Format>

<ogrFormat>CSV</ogrFormat>
<formatName>OGR-CSV</formatName>
<fileExtension>.csv</fileExtension>
<singleFile>true</singleFile>
<mimeType>text/csv</mimeType>

</Format>
<Format>

<ogrFormat>KML</ogrFormat>
<formatName>OGR-KML</formatName>
<fileExtension>.kml</fileExtension>
<singleFile>true</singleFile>
<mimeType>application/vnd.google-earth.kml</mimeType>

</Format>
</formats>

</OgrConfiguration>

The file showcases all possible usage of the configuration elements:

• ogr2ogrLocation can be just ogr2ogr if the command is in the path, otherwise it should be the full
path to the executable. For example, on a Windows box with FWTools installed it might be:

<ogr2ogrLocation>c:\Programmi\FWTools2.2.8\bin\ogr2ogr.exe</ogr2ogrLocation>

• gdalData must point to the GDAL data directory. For example, on a Windows box with FWTools
installed it might be:

<gdalData>c:\Programmi\FWTools2.2.8\data</gdalData>

• Format defines a single format, which is defined by the following tags:

– ogrFormat: the name of the format to be passed to ogr2ogr with the -f option (it’s case sensi-
tive).

– formatName: is the name of the output format as advertised by GeoServer

– fileExtension: is the extension of the file generated after the translation, if any (can be omit-
ted)

– option: can be used to add one or more options to the ogr2ogr command line. As you can see
by the MIF example, each item must be contained in its own tag. You can get a full list of options
by running ogr2ogr –help or by visiting the ogr2ogr web page. Also consider that each format
supports specific creation options, listed in the description page for each format (for example,
here is the MapInfo one).

– singleFile (since 2.0.3): if true the output of the conversion is supposed to be a single file that
can be streamed directly back without the need to wrap it into a zip file

– mimeType (since 2.0.3): the mime type of the file returned when using singleFile. If not
specified application/octet-stream will be used as a default.

506 Chapter 16. Extensions

GeoServer User Manual, Release 2.1-RC4

16.4 Cross layer filtering

The “querylayer” module adds a few extra filter functions that allow for cross layer filtering, that is, the
ability to find in layer A features that have a certain relationship with features in layer B. This can be used,
for example, to find all bus stops within a certain distance from a shop, or all coffe shops in a certain city
district. Since filter functions are widely supported in GeoServer this cross layer filtering can be applied in
SLDs, CQL filters and WFS requests alike.

16.4.1 Installing the ‘querylayer’ module

1. Download the ‘querylayer’ extension corresponding to your version of GeoServer.

Warning: Make sure to match the version of the extension to the version of the GeoServer in-
stance!

2. Extract the contents of the archive into the WEB-INF/lib directory of the GeoServer installation.

3. To check the module is properly installed get the WFS 1.1 capabilities from the GS home page, the
Filter_Capabilities section should contain a reference to a new function named ‘queryCollection’

1 ...
2 <ogc:Filter_Capabilities>
3 ...
4 <ogc:ArithmeticOperators>
5 ...
6 <ogc:Functions>
7 <ogc:FunctionNames>
8 ...
9 <ogc:FunctionName nArgs="-1">queryCollection</ogc:FunctionName>

10 <ogc:FunctionName nArgs="-1">querySingle</ogc:FunctionName>
11 ...
12 </ogc:FunctionNames>
13 </ogc:Functions>
14 </ogc:ArithmeticOperators>
15 </ogc:Scalar_Capabilities>
16 ...
17 </ogc:Filter_Capabilities>
18 ...

16.4. Cross layer filtering 507

GeoServer User Manual, Release 2.1-RC4

16.4.2 Function reference

Name Arguments Description
queryS-
ingle

layer: String,
attribute:String,
filter:String

Queries the specified layer‘‘applying the specified
(E)CQL ‘‘filter and returns the value of attribute from the
first feature in the result set. The layer name should be qualified
(e.g. topp:states), the filter can be INCLUDE if no filtering is
desired

queryCol-
lection

layer: String,
attribute:String,
filter:String

Queries the specified layer‘‘applying the specified
(E)CQL ‘‘filter and returns the list of the values from
attribute out of every single feature in the result set. The layer
name should be qualified (e.g. topp:states), the filter can be
INCLUDE if no filtering is desired. Will throw an exception if too
many results are being collected (see the memory limits section for
details)

collect-
Geome-
tries

geometries: a list of
Geometry objects

Turns the list of geometries into a single Geometry object, suitable
for being used as the reference geometry in spatial filters. Will
throw an exception if too many coordinates are being collected (the
results of queryCollection cannot be used as is)

16.4.3 Optimizing the module speed

In order to have the module run at full speed on the 2.1.x series it is necessary to add the following param-
eter as a system variable when starting the Java Virtual Machine:

-Dorg.geotools.filter.function.simplify=true

This will make sure the functions are evaluated just once per query instead of once per feature matched
by the filter. The flag is not necessary on trunk (2.2.x series) and hopefully this behavior will become the
default on 2.1.x as well.

16.4.4 Memory limits

The query and geometry collection functions are not really performing a database style join, instead they
do execute a query against the layer every time they are executed and load the result fully in memory. Both
queryCollection and collectGeometries are thus at risk of filling up the server memory with data
if the layer being queries is large, or if the geometries being collected are few but very large. Since this
might threaten the server stability there are built in limits to what can be collected:

• at most 1000 features will be collected by queryCollection

• at most 37000 coordinates (1MB worth of Coordinate objects) will be collected by
collectGeometries

Both limits can be overridden by setting appropriate values either as system variable, servlet context vari-
ables, or enviroment variables:

• set QUERY_LAYER_MAX_FEATURES to alter the max number of features collected by
queryCollection

• set GEOMETRY_COLLECT_MAX_COORDINATES to alter the max number of coordinates collected by
collectGeometries

508 Chapter 16. Extensions

GeoServer User Manual, Release 2.1-RC4

16.4.5 WMS Examples

The following examples use the sf:bugsites, sf:roads and sf:restricted demo layers available in
the standard GeoServer download.

Get only the bugsites overlapping the restricted area whose category is ‘‘3‘‘. The CQL filter on bugsites is
INTERSECTS(the_geom, querySingle(’restricted’, ’the_geom’,’cat = 3’)), the full re-
quest is:

http://localhost:8080/geoserver/wms?LAYERS=sf%3Aroads%2Csf%3Arestricted%2Csf%3Abugsites&STYLES=&FORMAT=image%2Fpng&SERVICE=WMS&VERSION=1.1.1&REQUEST=GetMap&EXCEPTIONS=application%2Fvnd.ogc.se_inimage&SRS=EPSG%3A26713&CQL_FILTER=INCLUDE%3BINCLUDE%3BINTERSECTS(the_geom%2C%20querySingle(%27restricted%27%2C%20%27the_geom%27%2C%27cat%20%3D%203%27))&BBOX=589081.6705629,4914128.1213261,609174.02430924,4928177.0717971&WIDTH=512&HEIGHT=358

and the result looks like:

Get all bugsides within 200 meters from roads. The CQL filter looks like DWITHIN(the_geom,
collectGeometries(queryCollection(’sf:roads’,’the_geom’,’INCLUDE’)), 200,
meters), the full request is:

http://localhost:8080/geoserver/wms?LAYERS=sf%3Aroads%2Csf%3Arestricted%2Csf%3Abugsites&STYLES=&FORMAT=image%2Fpng&SERVICE=WMS&VERSION=1.1.1&REQUEST=GetMap&EXCEPTIONS=application%2Fvnd.ogc.se_inimage&SRS=EPSG%3A26713&CQL_FILTER=INCLUDE%3BINCLUDE%3BDWITHIN(the_geom%2C%20collectGeometries(queryCollection(%27sf%3Aroads%27%2C%27the_geom%27%2C%27INCLUDE%27))%2C%20200%2C%20meters)&BBOX=589042.42768447,4914010.3926913,609134.78143081,4928059.3431623&WIDTH=512&HEIGHT=358

and the result looks liie:

16.4.6 WFS Examples

The following examples use the sf:bugsites, sf:roads and sf:restricted demo layers available in
the standard GeoServer download.

Get only the bugsites overlapping the restricted area whose category is ‘‘3‘‘:

16.4. Cross layer filtering 509

http://localhost:8080/geoserver/wms?LAYERS=sf%3Aroads%2Csf%3Arestricted%2Csf%3Abugsites\&STYLES=\&FORMAT=image%2Fpng\&SERVICE=WMS\&VERSION=1.1.1\&REQUEST=GetMap\&EXCEPTIONS=application%2Fvnd.ogc.se_inimage\&SRS=EPSG%3A26713\&CQL_FILTER=INCLUDE%3BINCLUDE%3BDWITHIN(the_geom%2C%20collectGeometries(queryCollection(%27sf%3Aroads%27%2C%27the_geom%27%2C%27INCLUDE%27))%2C%20200%2C%20meters)\&BBOX=589042.42768447,4914010.3926913,609134.78143081,4928059.3431623\&WIDTH=512\&HEIGHT=358

GeoServer User Manual, Release 2.1-RC4

510 Chapter 16. Extensions

GeoServer User Manual, Release 2.1-RC4

1 <wfs:GetFeature xmlns:wfs="http://www.opengis.net/wfs"
2 xmlns:sf="http://www.openplans.org/spearfish"
3 xmlns:ogc="http://www.opengis.net/ogc"
4 service="WFS" version="1.0.0">
5 <wfs:Query typeName="sf:bugsites">
6 <ogc:Filter>
7 <ogc:Intersects>
8 <ogc:PropertyName>the_geom</ogc:PropertyName>
9 <ogc:Function name="querySingle">

10 <ogc:Literal>sf:restricted</ogc:Literal>
11 <ogc:Literal>the_geom</ogc:Literal>
12 <ogc:Literal>cat = 3</ogc:Literal>
13 </ogc:Function>
14 </ogc:Intersects>
15 </ogc:Filter>
16 </wfs:Query>
17 </wfs:GetFeature>

Get all bugsides within 200 meters from roads:

1 <wfs:GetFeature xmlns:wfs="http://www.opengis.net/wfs"
2 xmlns:sf="http://www.openplans.org/spearfish"
3 xmlns:ogc="http://www.opengis.net/ogc"
4 service="WFS" version="1.0.0">
5 <wfs:Query typeName="sf:bugsites">
6 <ogc:Filter>
7 <ogc:DWithin>
8 <ogc:PropertyName>the_geom</ogc:PropertyName>
9 <ogc:Function name="collectGeometries">

10 <ogc:Function name="queryCollection">
11 <ogc:Literal>sf:roads</ogc:Literal>
12 <ogc:Literal>the_geom</ogc:Literal>
13 <ogc:Literal>INCLUDE</ogc:Literal>
14 </ogc:Function>
15 </ogc:Function>
16 <ogc:Distance units="meter">100</ogc:Distance>
17 </ogc:DWithin>
18 </ogc:Filter>
19 </wfs:Query>
20 </wfs:GetFeature>

16.5 GeoExt Styler

16.5.1 Installation

1. Download the REST plugin for your version of GeoServer from the download page .

2. Unzip the archive into the WEB-INF/lib directory of the GeoServer installation.

3. Restart GeoServer

4. Download the GeoExt Styler extension from here (it says 1.7.3 but the version number doesn’t matter.
Soon there will be an updated release)

5. Unzip the archive into the www/ directory of the GeoServer data directory.

16.5. GeoExt Styler 511

http://geoserver.org/display/GEOS/Download
http://downloads.sourceforge.net/geoserver/styler-1.7.3.zip

GeoServer User Manual, Release 2.1-RC4

16.5.2 Usage

1. Visit http://localhost:8080/geoserver/www/styler/index.html 2. Use the “Layers” panel to
select a layer to style.

1. In the “Legend” panel select a rule by clicking on it.

2. Change the color by clicking in the color box.

3. Click on a feature to view information about its attributes and which rules applied to it.

512 Chapter 16. Extensions

http://localhost:8080/geoserver/www/styler/index.html

GeoServer User Manual, Release 2.1-RC4

16.5. GeoExt Styler 513

GeoServer User Manual, Release 2.1-RC4

514 Chapter 16. Extensions

GeoServer User Manual, Release 2.1-RC4

16.6 WFS Versioning

16.6.1 Introduction

One of GeoServer’s goals is to help bring the types of collaboration of open source software to the geospatial
domain. Just like people across the world form communities and governance structures to build software
together, we hope to enable similar things to happen with the creation and maintenance of geospatial data.
In the software domain there are a variety of tools - IDE’s, version control, bug trackers, etc. that help make
this possible. GeoServer hopes to help provide tools that better enable geospatial collaboration.

The Transaction portion of the WFS Standard (also known as WFS-T) specifies an open protocol for insert-
ing, deleting and updating geospatial information. Which is a great start to enable a wide variety of tools,
both web-based and desktop, to edit the same database. But it falls short in all but the most controlled
environments, as it’s too easy to mess things up for everyone. GeoServer’s Security system is one step in
this direction, to help people control their environment.

WFS Versioning is a set of extensions to the WFS protocol to keep track of ‘versions’ of edits. This enables
wiki-style editing of geospatial information, by keeping the history of all changes to the data.

16.6.2 Protocol

WFS Versioning (WFS-V) is not an official OGC standard, and has not yet entered the standard process. In
time the GeoServer community hopes to try to standardize it, but first is focused on getting real world im-
plementations. It is designed to be as compatible with WFS-T as possible, reusing elements and extending
operations. In the future a REST equivalent may be implemented.

WFS-V adds two new operations and one new action on the Transaction operation.

Operation Description
GetLog Returns summaries of the changes that have taken place over a set of constraints.
GetDiff Retrieves the actual changes that have occurred.
Rollback (optional) A convenience Transaction element, to revert changes to a previous revision.

For more information on the extensions to WFS see the detailed draft specification.

16.6.3 Implementation

GeoServer has completed a first phase implementation that is working in prototype situations. See this blog
post for more information on one of the working prototypes. It has not been used in production, so don’t
expect it to work perfectly. But the extension is available for download, and we appreciate any help we can
get, even just trying it out and reporting bugs.

The implementation currently just works against PostGIS. But there are future plans to have it work seam-
lessly with Oracle Workspace Manager and ArcSDE Versioning. Doing this may involve adjusting the
protocol. On the client side the protocol has been implemented in OpenLayers. And it will work trans-
parently against any WFS-T client, though a non-versioning aware client won’t be able to supply commit
messages or make use of the advanced operations. But all changes it does make will be versioned.

See the Phase one implementation proposal section of the wiki for more information on what’s been built.
The main Versioning WFS page also has a lot of information on the background and decisions in the imple-
mentation, and will be the point of collaboration in the future.

16.6. WFS Versioning 515

http://geoserver.org/display/GEOS/Versioning+WFS+-+Extensions
http://blog.opengeo.org/2009/03/17/versioning-vespucci/
http://blog.opengeo.org/2009/03/17/versioning-vespucci/
http://geoserver.org/display/GEOS/Versioning+WFS+-+Phase+one+implementation+proposal
http://geoserver.org/display/GEOS/Versioning+WFS

GeoServer User Manual, Release 2.1-RC4

16.6.4 Trying it out

After the next round of work on WFS-V we will be publishing some docs to get anyone started. In the
meantime advanced users can likely figure things out by looking at some of the older information on the
wiki - trying early WFS-V prototype and the Versioning section from the 2007 Foss4g workshop.

16.7 Web Processing Service

Web Processing Service (WPS) is an OGC service for the publishing of geospatial processes, algorithms, and
calculations. WPS extends the web mapping server to provide geospatial analysis.

WPS is not a part of GeoServer by default, but is available as an extension.

The main advantage of GeoServer WPS over a standalone WPS is direct integration with other GeoServer
services and the data catalog. This means that it is possible to create processes based on data served in
GeoServer, as opposed to sending the entire data source in the request. It is also possible for the results
of a process to be stored as a new layer in the GeoServer catalog. In this way, WPS acts as a full remote
geospatial analysis tool, capable of reading and writing data from and to GeoServer.

For the official WPS specification, see http://www.opengeospatial.org/standards/wps.

16.7.1 Installing the WPS extension

The WPS module is not a part of GeoServer core, but instead must be installed as an extension. To install
WPS:

1. Navigate to the GeoServer download page

2. Find the page that matches the version of the running GeoServer.

Warning: Be sure to match the version of the extension with that of GeoServer, otherwise errors
will occur.

3. Download the WPS extension. The download link for WPS will be in the Extensions section under
Other.

4. Extract the files in this archive to the WEB-INF/lib directory of your GeoServer installation.

5. Restart GeoServer.

After restarting, load the Web Administration Interface. If the extension loaded properly, you should see an
extra entry for WPS in the Service Capabilities column. If you don’t see this entry, check the logs for errors.

16.7.2 WPS Operations

Note: For the official WPS specification, please go to http://www.opengeospatial.org/standards/wps.

WPS defines three main operations for the publishing of geospatial processes. These operations are mod-
eled on similar operations in WFS and WMS. They are named:

• GetCapabilities

• DescribeProcess

• Execute

516 Chapter 16. Extensions

http://geoserver.org/display/GEOS/Trying+out+the+early+WFS-V+prototype
http://geoserver.org/display/GEOSDOC/6+Versioning
http://www.opengeospatial.org/standards/wps
http://geoserver.org/display/GEOS/Download
http://www.opengeospatial.org/standards/wps

GeoServer User Manual, Release 2.1-RC4

Figure 16.1: A link for the WPS capabilities document will display if installed properly

GetCapabilities

The GetCapabilities operation requests the WPS server to provide details of service offerings. This infor-
mation includes server metadata and metadata describing all processes implemented. The response from
the service is an XML document called the capabilities document.

To make a GetCapabilities request, use the following URL:

http://localhost:8080/geoserver/ows?
service=WPS&
version=1.0.0&
request=GetCapabilities

This URL assumes that GeoServer is located at http://localhost:8080/geoserver/.

The required parameters, as in all GetCapabilities requests, are service (service=WPS), version
(version=1.0.0), and request (request=GetCapabilities).

DescribeProcess

The DescribeProcess operation makes a request to the WPS server for a full description of a process known
to the WPS.

An example GET request (again, assuming a GeoServer at http://localhost:8080/geoserver/) us-
ing the process JTS:buffer, would look like this:

http://localhost:8080/geoserver/ows?
service=WPS&
version=1.0.0&

16.7. Web Processing Service 517

GeoServer User Manual, Release 2.1-RC4

request=DescribeProcess&
identifier=JTS:buffer

Here, the important parameter here is the identifier=JTS:buffer, as this defines what pro-
cess to describe. Multiple processes can be requested, separated by commas (for example,
identifier=JTS:buffer,gs:Clip), but at least one process must be specified.

Warning: As with all OGC parameters, the keys (request, version, etc) are case insensitive, and the
values (GetCapabilities, JTS:buffer, etc.) are case sensitive. GeoServer is generally more relaxed
about case, but it is good to be aware of the specification.

The response to this request contains the following information:

Title “Buffers a geometry using a certain distance”
Inputs distance: “The distance (same unit of measure as the geometry)” (double, mandatory)

quadrant segments: “Number of quadrant segments. Use > 0 for round joins, 0 for flat
joins, < 0 for mitred joins” (integer, optional)
capstyle: “The buffer cap style, round, flat, square” (selection, optional)

Output
formats

One of GML 3.1.1, GML 2.1.2, or WKT

Note: The specific processes available in GeoServer are subject to change.

Execute

The Execute operation makes a request to the WPS server to perform the actual process.

The inputs required for this request depend on the process being executed. For more information about
WPS processes in GeoServer, please see the section on WPS Processes.

This operation is cumbersome to view as a GET request, so below is an example of a POST request. The
specific process takes as an input a point at the origin (described in WKT as POINT(0 0)) and runs a buffer
operation (JTS:buffer) of 10 units with single quadrant segments and a flat style, and outputs GML 3.1.1.

<?xml version="1.0" encoding="UTF-8"?>
<wps:Execute version="1.0.0" service="WPS" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.opengis.net/wps/1.0.0" xmlns:wfs="http://www.opengis.net/wfs" xmlns:wps="http://www.opengis.net/wps/1.0.0" xmlns:ows="http://www.opengis.net/ows/1.1" xmlns:gml="http://www.opengis.net/gml" xmlns:ogc="http://www.opengis.net/ogc" xmlns:wcs="http://www.opengis.net/wcs/1.1.1" xmlns:xlink="http://www.w3.org/1999/xlink" xsi:schemaLocation="http://www.opengis.net/wps/1.0.0 http://schemas.opengis.net/wps/1.0.0/wpsAll.xsd">

<ows:Identifier>JTS:buffer</ows:Identifier>
<wps:DataInputs>
<wps:Input>

<ows:Identifier>geom</ows:Identifier>
<wps:Data>

<wps:ComplexData mimeType="application/wkt"><![CDATA[POINT(0 0)]]></wps:ComplexData>
</wps:Data>

</wps:Input>
<wps:Input>

<ows:Identifier>distance</ows:Identifier>
<wps:Data>

<wps:LiteralData>10</wps:LiteralData>
</wps:Data>

</wps:Input>
<wps:Input>

<ows:Identifier>quadrantSegments</ows:Identifier>
<wps:Data>

<wps:LiteralData>1</wps:LiteralData>
</wps:Data>

</wps:Input>

518 Chapter 16. Extensions

GeoServer User Manual, Release 2.1-RC4

<wps:Input>
<ows:Identifier>capStyle</ows:Identifier>
<wps:Data>

<wps:LiteralData>flat</wps:LiteralData>
</wps:Data>

</wps:Input>
</wps:DataInputs>
<wps:ResponseForm>
<wps:RawDataOutput mimeType="application/gml-3.1.1">

<ows:Identifier>result</ows:Identifier>
</wps:RawDataOutput>

</wps:ResponseForm>
</wps:Execute>

The response from such a request would be (numbers rounded for clarity):

<?xml version="1.0" encoding="utf-8"?>
<gml:Polygon xmlns:sch="http://www.ascc.net/xml/schematron"
xmlns:gml="http://www.opengis.net/gml"
xmlns:xlink="http://www.w3.org/1999/xlink">
<gml:exterior>
<gml:LinearRing>

<gml:posList>
10.0 0.0
0.0 -10.0
-10.0 0.0
0.0 10.0
10.0 0.0

</gml:posList>
</gml:LinearRing>

</gml:exterior>
</gml:Polygon>

For help in generating WPS requests, you can use the built-in WPS Request Builder.

16.7.3 WPS Processes

The Web Processing Service describes a method for publishing geospatial processes, but does not specify
what those processes should be. Servers that implement WPS therefore have complete leeway in what types
of processes to implement, as well as how those processes are implemented. This means that a process
request designed for one type of WPS is not expected to work on a different type of WPS.

GeoServer implements processes from two different categories:

• JTS Topology Suite processes

• GeoServer-specific processes

JTS Topology Suite processes

JTS Topology Suite is a Java library of functions for processing geometries in two dimensions. JTS conforms
to the Simple Features Specification for SQL published by the Open Geospatial Consortium (OGC), similar
to PostGIS. JTS includes common spatial functions such as area, buffer, intersection, and simplify.

16.7. Web Processing Service 519

http://tsusiatsoftware.net/jts/main.html

GeoServer User Manual, Release 2.1-RC4

GeoServer WPS implements some of these functions as processes. The names and definitions of these
processes are subject to change, so they have not been included here. For a full list of JTS processes, please
see the GeoServer WPS capabilities document.

GeoServer processes

GeoServer WPS includes a few processes created especially for use with GeoServer. These are usually
GeoServer-specific functions, such as bounds and reprojection. They use an internal connection to the
GeoServer WFS/WCS, not part of the WPS specification, for reading and writing data.

As with JTS, the names and definitions of these processes are subject to change, so they have not been
included here. For a full list of GeoServer-specific processes, please see the GeoServer WPS capabilities
document.

Process chaining

One of the benefits of WPS is its native ability to chain processes. Much like how functions can call other
functions, a WPS process can use as its input the output of another process. Many complex functions can
thus be combined in to a single powerful request.

To see WPS requests in action, you can use the built-in WPS Request Builder.

16.7.4 WPS Request Builder

The GeoServer WPS extension includes a request builder for testing out various WPS processes through the
Web Administration Interface.

Accessing the request builder

To access the WPS Request Builder:

1. Navigate to the main Web Administration Interface.

2. Click on the Demos link on the left side.

3. Select WPS Request Builder from the list of demos.

Figure 16.2: WPS request builder in the list of demos

520 Chapter 16. Extensions

GeoServer User Manual, Release 2.1-RC4

Using the request builder

The WPS Request Builder primarily consists of a selection box listing all of the available processes, and two
buttons, one to submit the WPS request, and another to display what the POST request looks like.

Figure 16.3: Blank WPS request builder form

The display changes depending on the process and input selected. JTS processes have available as inputs
any of a GML/WKT-based feature collection, URL reference, or subprocess. GeoServer-specific processes
have all these as options and also includes the ability to choose a GeoServer layer as input.

For each process, a form will display based on the required and optional parameters associated with that
process, if any.

To see the process as a POST request, click the Generate XML from process inputs/outputs button.

To execute the process, click the Execute Process button. The response will be displayed in a window or

16.7. Web Processing Service 521

GeoServer User Manual, Release 2.1-RC4

Figure 16.4: WPS request builder form to determine the bounds of topp:states

522 Chapter 16. Extensions

GeoServer User Manual, Release 2.1-RC4

Figure 16.5: Raw WPS POST request for the above process

16.7. Web Processing Service 523

GeoServer User Manual, Release 2.1-RC4

Figure 16.6: WPS server response

524 Chapter 16. Extensions

CHAPTER 17

Tutorials

17.1 Freemarker Templates

17.1.1 Introduction

This tutorial will introduce you to a more in depth view of what FreeMarker templates are and how you
can use the data provided to templates by GeoServer.

Freemarker is a simple yet powerful template engine that GeoServer uses whenever developer allowed
user customization of outputs. In particular, at the time of writing it’s used to allow customization of
GetFeatureInfo, GeoRSS and KML outputs.

Freemarker allows for simple variable expansions, as in ${myVarName}, expansion of nested properties,
such as in ${feature.myAtt.value}, up to little programs using loops, ifs and variables. Most of the
relevant information about how to approach template writing is included in the Freemarker’s Designer
guide and won’t be repeated here: the guide, along with the KML Placemark Templates and GetFeatureInfo
Templates tutorials should be good enough to give you a good grip on how a template is built.

Template Lookup

Geoserver looks up templates in three different places, allowing you for various level of customization.
Given a templated output, a template name (template.ftl) and a feature type (myFeatureType),
Geoserver will perform the following lookups:

• Look into GEOSERVER_DATA_DIR/workspaces/<workspace>/<datastore>/myfeatureType/template.ftl
to see if there is a type specific template

• Look into GEOSERVER_DATA_DIR/templates/<workspace>/template.ftl to see if there is a
workspace-specific template

• Look into GEOSERVER_DATA_DIR/templates/template.ftl looking for a global override

• Look into the GeoServer classpath and load the default template

Each templated output format tutorial should provide you with the template names, and state whether the
templates can be type specific, or not. Missing the source for the default template, look up for the service jar
in the geoserver distribution (for example, wms-x.y.z.jar), unpack it, and you’ll find the actual xxx.ftl files
GeoServer is using as the default templates.

525

http://www.freemarker.org/
http://www.freemarker.org/docs/dgui.html
http://www.freemarker.org/docs/dgui.html

GeoServer User Manual, Release 2.1-RC4

Common Data Models

Freemarker calls “data model” the set of data provided to the template. Each output format used by
Geoserver will inject a different data model according to the informations it’s managing, yet there are three
very common elements that appear in almost each template, Feature, FeatureType and FeatureCollection.
Here we provide a data model of each.

The data model is a sort of a tree, where each element has a name and a type. Besides basic types, we’ll use:

• list: a flat list of items that you can scan thru using the FreeMarker <#list> directive;

• map: a key/value map, that you usually access using the dot notation, as in ${myMap.myKey}, and
can be nested;

• listMap: a special construct that is, at the same time, a Map, and a list of the values.

Here are the three data models (as you can see there are redundancies, in particular in attributes, we chose
this approach to make template building easier):

FeatureType (map)

• name (string): the type name

• attributes (listMap): the type attributes

– name (string): attribute name

– type (string): attribute type, the fully qualified Java class name

– isGeometry (boolean): true if the attribute is geometric, false otherwise

Feature (map)

• fid (string): the feature ID (WFS feature id)

• typeName (string): the type name

• attributes (listMap): the list of attributes (both data and metadata)

– name (string): attribute name

– type (string): attribute type, the fully qualified Java class name

– isGeometry (boolean): true if the attribute is geometric, false otherwise

– value: the attribute value (as a string)

• type (map)

– name (string): the type name (same as typeName)

– title (string): The title configured in the admin console

– abstract (string): The abstract for the type

– description (string): The description for the type

– keywords (list): The keywords for the type

– metadataLinks (list): The metadata URLs for the type

– SRS (string): The layer’s SRS

– nativeCRS (string): The layer’s coordinate reference system as WKT

FeatureCollection (map)

• features (list of Feature, see above)

526 Chapter 17. Tutorials

GeoServer User Manual, Release 2.1-RC4

• type (FeatureType, see above)

17.2 GeoRSS

GeoServer supports GeoRSS as an output format allowing you to serve features as an RSS feed.

17.2.1 Quick Start

If you are using a web browser which can render rss feeds simply visit the url
http://localhost:8080/geoserver/wms/reflect?layers=states&format=rss in your browser. This is as-
suming a local GeoServer instance is running with an out of the box configuration. You should see a result
that looks more or less like this:

Figure 17.1: topp:states rss feed

17.2.2 Ajax Map Mashups

Note: Internet visible geoServer required for Ajax Mashups. Your GeoServer instance must be visible from
the internet, IE; localhost will not work.

17.2.3 Google Maps

How to create a Google Maps mashup with a GeoRSS overlay produced by GeoServer.

17.2. GeoRSS 527

http://georss.org/
http://localhost:8080/geoserver/wms/reflect?layers=states\&format=rss

GeoServer User Manual, Release 2.1-RC4

1. Obtain a Google Maps API Key from Google.

2. Create an html file called gmaps.html:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org R/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">

<head>
<meta http-equiv="content-type" content="text/html; charset=utf-8"/>
<title>Google Maps JavaScript API Example< itle>
<script src="http://maps.google.com/maps?file=api&v=2.x&key=<INSERT MAPS API KEY HERE>" type="text/javascript"></script>

<script type="text/javascript">
//<![CDATA[

function load() {
if (GBrowserIsCompatible()) {

var map = new GMap2(document.getElementById("map"));
map.addControl(new GLargeMapControl());
map.setCenter(new GLatLng(40,-98), 4);
var geoXml = new GGeoXml("<INSERT GEOSERVER URL HERE>/geoserver/wms/reflect?layers=states&format=rss");
map.addOverlay(geoXml);

}
}

//]]>
</script>

</head>
<body onload="load()" onunload="GUnload()">

<div id="map" style="width: 800px; height: 600px"></div>
</body>

</html>

3. Visit gmaps.html in your web browser.

Note: The version of the google maps api must be 2.x, and not just 2 You must insert your specific maps
api key, and geoserver base url

17.2.4 Yahoo Maps

How to create a Yahoo! Maps mashup with a GeoRSS overlay produced by GeoServer.

1. Obtain a <Yahoo Maps Application ID <http://search.yahooapis.com/webservices/register_application>‘_
from Yahoo.

2. Create an html file called ymaps.html:

<html>
<head>
<title>Yahoo! Maps GeoRSS Overlay Example< itle>
<script src="http://api.maps.yahoo.com/ajaxymap?v=3.0&appid=<INSERT APPLICATION ID HERE>" type="text/javascript"></script>
<script type="text/javascript" language="JavaScript">

function StartYMap() {
var map = new YMap(document.getElementById(’ymap’));
map.addPanControl();
map.addZoomShort();

function doStart(eventObj) {
var defaultEventObject = eventObj;

528 Chapter 17. Tutorials

http://www.google.com/apis/maps/signup.html
http://search.yahooapis.com/webservices/register_application

GeoServer User Manual, Release 2.1-RC4

//eventObj.ThisMap [map object]
//eventObj.URL [argument]
//eventObj.Data [processed input]

}

function doEnd(eventObj) {
var defaultEventObject = eventObj;
//eventObj.ThisMap [map object]
//eventObj.URL [argument]
//eventObj.Data [processed input]
map.smoothMoveByXY(new YCoordPoint(10,50));

}

YEvent.Capture(map,EventsList.onStartGeoRSS, function(eventObj) { doStart(eventObj); });
YEvent.Capture(map,EventsList.onEndGeoRSS, function(eventObj) { doEnd(eventObj); });

map.addOverlay(new YGeoRSS(’http://<INSERT GEOSERVER URL HERE>/geoserver/wms/reflect?layers=states&format=rss’));
}

window.onload = StartYMap;
</script>
</head>
<body>

<div id="ymap" style="width: 800px; height: 600px; left:2px; top:2px"></div>
</body>

</html>

3. Visit ymaps.html in your web browser.

Note: The version of the yahoo maps api must be 3.0 You must insert your specific application id, and
geoserver base url

17.2.5 Microsoft Virtual Earth

Note: Non Internet Explorer Users*: GeoRSS overlays are only supported in Internet Explorer, versions
greater then 5.5.

How to create a Microsoft Virtual Earth mashup with a GeoRSS overlay produced by GeoServer.

Note: To access a GeoRSS feed from Microsoft Virtual Earth the file (ve.html) must be accessed from a Web
Server, IE. It will not work if run from local disk.

1. Create an html file called ve.html. Note: You must insert your specific maps api key, and geoserver
base url:

<html>
<head>

<script src="http://dev.virtualearth.net/mapcontrol/v4/mapcontrol.js"></script>
<script>
var map;

function OnPageLoad()
{

map = new VEMap(’map’);
map.LoadMap();

var veLayerSpec = new VELayerSpecification();

17.2. GeoRSS 529

GeoServer User Manual, Release 2.1-RC4

veLayerSpec.Type = VELayerType.GeoRSS;
veLayerSpec.ID = ’Hazards’;

veLayerSpec.LayerSource = ’http://<INSERT GEOSERVER URL HERE>/geoserver/wms/reflect?layers=states&format=rss’;
veLayerSpec.Method = ’get’;
map.AddLayer(veLayerSpec);
}

</script>
</head>
<body onload="OnPageLoad();">

<div id="map" style="position:relative;width:800px;height:600px;"></div>
</body>

</html>

2. Visit ve.html in your web browser. You should see the following:

Figure 17.2: Virtual Earth

530 Chapter 17. Tutorials

GeoServer User Manual, Release 2.1-RC4

17.3 GetFeatureInfo Templates

This tutorial describes how to use the GeoServer template system to create custom HTML GetFeatureInfo
responses.

17.3.1 Introduction

GetFeatureInfo is a WMS standard call that allows one to retrieve information about features and coverages
displayed in a map. The map can be composed of various layers, and GetFeatureInfo can be instructed to
return multiple feature descriptions, which may be of different types. GetFeatureInfo can generate output
in various formats: GML2, plain text and HTML. Templating is concerned with the HTML one.

The default HTML output is a sequence of titled tables, each one for a different layer. The following example
shows the default output for the tiger-ny basemap (included in the above cited releases, and onwards).

17.3.2 Standard Templates

The following assumes you’re already up to speed with Freemarker templates. If you’re not, read the
Freemarker Templates tutorial, and the KML Placemark Templates page, which has simple examples.

The default output is generated by the standard templates, which are three:

• header.ftl

• content.ftl

• footer.ftl

The header template is invoked just once, and usually contains the start of the HTML page, along with some
CSS. The default header template looks like this (as you can see, it’s completely static, and it’s in fact not
provided with any variable you could expand):

<#--
Header section of the GetFeatureInfo HTML output. Should have the <head> section, and
a starter of the <body>. It is advised that eventual css uses a special class for featureInfo,
since the generated HTML may blend with another page changing its aspect when usign generic classes
like td, tr, and so on.
-->
<html>

<head>
<title>Geoserver GetFeatureInfo output</title>

</head>
<style type="text/css">

table.featureInfo, table.featureInfo td, table.featureInfo th {
border:1px solid #ddd;
border-collapse:collapse;
margin:0;
padding:0;
font-size: 90%;
padding:.2em .1em;

}
table.featureInfo th{

padding:.2em .2em;
text-transform:uppercase;
font-weight:bold;
background:#eee;

17.3. GetFeatureInfo Templates 531

GeoServer User Manual, Release 2.1-RC4

Figure 17.3: Default Output

532 Chapter 17. Tutorials

GeoServer User Manual, Release 2.1-RC4

}
table.featureInfo td{

background:#fff;
}
table.featureInfo tr.odd td{

background:#eee;
}
table.featureInfo caption{

text-align:left;
font-size:100%;
font-weight:bold;
text-transform:uppercase;
padding:.2em .2em;

}
</style>
<body>

The footer template is similar, a static template used to close the HTML document properly:

<#--
Footer section of the GetFeatureInfo HTML output. Should close the body and the html tag.
-->

</body>
</html>

The content template is the one that turns feature objects into actual HTML tables. The template is called
multiple times: each time it’s fed with a different feature collection, whose features all have the same type.
In the above example, the template has been called once for the roads, and once for the points of interest
(POI). Here is the template source:

<#--
Body section of the GetFeatureInfo template, it’s provided with one feature collection, and
will be called multiple times if there are various feature collections
-->
<table class="featureInfo">

<caption class="featureInfo">${type.name}</caption>
<tr>

<#list type.attributes as attribute>
<#if !attribute.isGeometry>
<th >${attribute.name}</th>

</#if>
</#list>

</tr>

<#assign odd = false>
<#list features as feature>

<#if odd>
<tr class="odd">

<#else>
<tr>

</#if>
<#assign odd = !odd>

<#list feature.attributes as attribute>
<#if !attribute.isGeometry>

<td>${attribute.value}</td>
</#if>

17.3. GetFeatureInfo Templates 533

GeoServer User Manual, Release 2.1-RC4

</#list>
</tr>

</#list>
</table>

As you can see there is a first loop scanning type and outputting its attributes into the table header, then a
second loop going over each feature in the collection (features). From each feature, the attribute collections
are accessed to dump the attribute value. In both cases, geometries are skipped, since there is not much
point in including them in the tabular report. In the table building code you can also see how odd rows are
given the “odd” class, so that their background colors improve readability.

17.3.3 Custom Templates

So, what do you have to do if you want to override the custom templates? Well, it depends on which
template you want to override.

header.ftl and footer.ftl are type independent, so if you want to override them you have to place a
file named header.ftl or footer.ftl in the templates directory, located in your GeoServer GeoServer
Data Directory. On the contrary, content.ftl may be generic, or specific to a feature type.

For example, let’s say you would prefer a bulleted list appearance for your feature info output, and you
want this to be applied to all GetFeatureInfo HTML output. In that case you would drop the following
content.ftl in the templates directory:

<#list features as feature>

Type: ${type.name} (id: ${feature.fid}):

<#list feature.attributes as attribute>
<#if !attribute.isGeometry>

${attribute.name}: ${attribute.value}
</#if>

</#list>

</#list>

With this template in place, the output would be:

Looking at the output we notice that point of interest features refer to image files, which we know are stored
inside the default GeoServer distribution in the demo_app/pics path. So, we could provide a POI specific
override that actually loads the images.

This is easy: just put the following template in the feature type folder, which in this case is
workspaces/topp/DS_poi/poi (you should refer to your Internet visible server address instead of lo-
calhost, or its IP if you have fixed IPs):

<#list features as feature>

Point of interest, "${feature.NAME.value}":

</#list>

534 Chapter 17. Tutorials

GeoServer User Manual, Release 2.1-RC4

Figure 17.4: Bulleted List Output

17.3. GetFeatureInfo Templates 535

GeoServer User Manual, Release 2.1-RC4

With this additional template, the output is:

Figure 17.5: Output with Thumbnail Image

As you can see, roads are still using the generic template, whilst POI is using its own custom template.

17.3.4 Advanced Formating

The value property of Feature attribute values are given by geoserver in String form, using a sensi-
ble default depending on the actual type of the attribute value. If you need to access the raw attribute
value in order to apply a custom format (for example, to output "Enabled" or "Disabled" for a given
boolean property, instead of the default true/false, you can just use the rawValue property instead of

536 Chapter 17. Tutorials

GeoServer User Manual, Release 2.1-RC4

value. For example: ${attribute.rawValue?string("Enabled", "Disabled")} instead of just
${attribute.value}.

17.4 Paletted Images

Geoserver has the ability to output high quality 256 color images. This tutorial introduces you to the palette
concepts, the various image generation options, and offers a quality/resource comparison of them in dif-
ferent situations.

17.4.1 What are Paletted Images?

Some image formats, such as GIF or PNG, can use a palette, which is a table of (usually) 256 colors to allow
for better compression. Basically, instead of representing each pixel with its full color triplet, which takes
24bits (plus eventual 8 more for transparency), they use a 8 bit index that represent the position inside the
palette, and thus the color.

This allows for images that are 3-4 times smaller than the standard images, with the limitation that only 256
different colors can appear on the image itself. Depending of the actual map, this may be a very stringent
limitation, visibly degrading the image quality, or it may be that the output cannot be told from a full color
image. But for many maps one can easily find 256 representative colors.

In the latter case, the smaller footprint of paletted images is usually a big gain in both performance and
costs, because more data can be served with the same internet connection, and the clients will obtain re-
sponses faster.

17.4.2 Formats and Antialiasing

Internet standards offer a variety of image formats, all having different strong and weak points. The three
most common formats are:

• JPEG: a lossy format with tunable compression. JPEG is best suited for imagery layers, where the
pixel color varies continuously from one pixel to the next one, and allows for the best compressed
outputs. On the contrary, it’s not suited to most vector layers, because even slight compression gen-
erates visible artifacts on uniform color areas.

• PNG: a non lossy format allowing for both full color and paletted. In full color images each pixel is
encoded as a 24bits integer with full transparency information (so PNG images can be translucent),
in paletted mode each pixel is an 8 bit index into a 256 color table (the palette). This format is best
suited to vector layers, especially in the paletted version. The full color version is sometimes referred
as PNG24, the paletted version as PNG8.

• GIF: a non lossy format with a 256 color palette, best suited for vector layers. Does not support
translucency, but allows for fully transparent pixels.

So, as it turns out, paletted images can be used with profit on vector data sets, either using the PNG8 or GIF
formats.

Antialiasing plays a role too. Let’s take a road layer, where each road is depicted by a solid gray line, 2
pixels thick. One may think this layer needs only 2 colors: the background one (eventually transparent)
and gray. In fact, this is true only if no antialiasing is enabled. Antialiasing will smooth the borders of the
line giving a softer, better looking shape, and it will do so by adding pixels with an intermediate color, thus
increasing the number of colors that are needed to fully display the image.

The following zoom of an image shows antialiasing in action:

17.4. Paletted Images 537

GeoServer User Manual, Release 2.1-RC4

Figure 17.6: Antialiasing

These output formats, if no other parameters are provided, do compute the optimal palette on the fly. As
you’ll see, this is an expensive process (CPU bound), but as you’ll see, depending on the speed of the
network connecting the server and the client, the extra cost can be ignored (especially if the bottleneck can
be found in the network instead of the server CPU).

Optimal palette computation is anyways a repetitive work that can be done up front: a user can compute
the optimal palette once, and tell GeoServer to use it. There are three ways to do so:

1. Use the internet safe palette, a standard palette built in into GeoServer, by appending palette=safe
to the GetMap request.

2. Provide a palette by example. In this case, the user will generate an 256 color images using an external
program (such as Photoshop), and then will save it into the $GEOSERVER_DATA_DIR/palettes
directory. The sample file can be either in GIF or PNG format. If the file is named mypalette.gif
or mypalette.png, the user will be able to refer it appending palette=mypalette to the GetMap
request. GeoServer will load the palette from the file and use it.

3. Provide a palette file. The process is just as before, but this time only the palette, in .PAL format
(Microsoft Palette Format, can be generated both by Paint Shop Pro and IrfanView), will be stored
into $GEOSERVER_DATA_DIR/palettes.

17.4.3 An Example with Vector Data

Enough theory, let’s have a look at how to deal with paletted images in practice. We’ll use the tiger-ny
basemap to gather some numbers, and in particular the following map request:

And we’ll change various parameters in order to play with formats and palettes. Here goes the sampler:

Parameters:FORMAT=image/png | Size: 257 KB | Map generation time: 0.3s

Parameters:FORMAT=image/png8 | Size: 60 KB | Map generation time: 0.6s

Parameters:FORMAT=image/png | Size: 257 KB | Map generation time: 0.3s

Parameters:FORMAT=image/png & palette=nyp | Size: 56KB | Map generation time: 0.3s

The attachments include also the GIF outputs, whose size, appearance and generation time does not differ
significantly from the PNG outputs.

As we can see, depending on the choice we have a variation on the image quality, size and generation time
(which has been recorded using the FasterFox Firefox extension timer, with the browser sitting on the same
box as the server). Using palette=xxx provides the best match in speed and size, thought using the built
in internet safe palette altered the colors. Then again, the real gain can be seen only by assuming a certain

538 Chapter 17. Tutorials

http://www.intuitive.com/coolweb/colors.html

GeoServer User Manual, Release 2.1-RC4

Figure 17.7: The standard PNG full color output

17.4. Paletted Images 539

GeoServer User Manual, Release 2.1-RC4

Figure 17.8: The PNG8 output

540 Chapter 17. Tutorials

GeoServer User Manual, Release 2.1-RC4

Figure 17.9: PNG + internet safe palette

17.4. Paletted Images 541

GeoServer User Manual, Release 2.1-RC4

Figure 17.10: PNG + ‘custom palette <http://geoserver.org/download/attachments/1278244/nyp.pal?version=1>‘_

542 Chapter 17. Tutorials

GeoServer User Manual, Release 2.1-RC4

connection speed between the server and the client, and adding the time required to move the image to the
client. The following table provides some results:

Configuration GT(s) File size (kb) TT 256kbit/s TT 1MBit/s TT 4MBit/s TT 20MBit/s
tiger-ny-png 0,36 257 8,39 2,42 0,87 0,46
tyger-ny-png8 0,6 60 2,48 1,08 0,72 0,62
tiger-ny-png + safe palette 0,3 56 22,05 0,75 0,41 0,32
tiger-ny-png + custom palette 0,3 59 2,14 0,77 0,42 0,32

Legend:

• GT: map generation time on the same box

• TT <speed>: total time needed for a client to show the image, assuming an internet connection of
the given speed. This time is a sum of of the image generation time and the transfer time, that is, GT
+ sizeInKbytes * 8/ speedInKbits.

As the table shows, the full color PNG image takes usually a lot more time than other formats, unless it’s
being served over a fast network (and even in this case, one should consider network congestion as well).
The png8 output format proves to be a good choice if the connection is slow, whilst the extra work done in
looking up an optimal palette always pays back in faster map delivery.

17.4.4 Generating the custom palette

The nyp.pal file has been generated using IrfanView, on Windows. The steps are simple:

• open the png 24 bit version of the image

• use Image/Decrease Color Depth and set 256 colors

• use Image/Palette/Export to save the palette

17.4.5 An example with raster data

To give you an example when paletted images may not fit the bill, let’s consider the sf:dem coverage from
the sample data, and repeat the same operation as before.

Parameters:FORMAT=image/png Size: 117 KB | Map generation time: 0.2s

Parameters:FORMAT=image/jpeg Size: 23KB | Map generation time: 0.12s

Parameters:FORMAT=image/png8 Size: 60 KB | Map generation time: 0.5s

Parameters:FORMAT=image/png & palette=dem-png8 Size: 48KB | Map generation time: 0.15s

Parameters:FORMAT=image/png‘‘& ‘‘palette=safe Size: 17KB | Map generation time: 0.15s

As the sample shows, the JPEG output has the same quality as the full color image, is generated faster and
uses only 1/5 of its size. On the other hand, the version using the internet safe palette is fast and small, but
the output is totally ruined. Everything considered, JPEG is the clear winner, sporting good quality, fast
image generation and a size that’s half of the best png output we can get.

17.4. Paletted Images 543

http://geoserver.org/download/attachments/1278244/nyp.pal?version=1

GeoServer User Manual, Release 2.1-RC4

Figure 17.11: The standard PNG full color output.

544 Chapter 17. Tutorials

GeoServer User Manual, Release 2.1-RC4

Figure 17.12: JPEG output

17.4. Paletted Images 545

GeoServer User Manual, Release 2.1-RC4

Figure 17.13: The PNG8 output.

546 Chapter 17. Tutorials

GeoServer User Manual, Release 2.1-RC4

Figure 17.14: PNG + custom palette (using the png8 output as the palette).

17.4. Paletted Images 547

GeoServer User Manual, Release 2.1-RC4

Figure 17.15: PNG + internet safe palette.

548 Chapter 17. Tutorials

GeoServer User Manual, Release 2.1-RC4

17.5 Serving Static Files

17.5.1 Introduction

Let’s say you’ve just setup your data and styles in Geoserver, and you’ve created a nice front end with a
pure javascript library like OpenLayers or MapBuilder. You’re ready to tell the world about your new shiny
app, there is only a catch... where do you put your static files (html files, a few icons, some javascript) so
that they are served on the web?

So far you did not have a quick solution, and had to use one of the following approaches:

1. Roll your own extra web app to be deployed along with Geoserver (in the same container). This
requires some java webapp setup knowledge.

2. Unpack geoserver, modify the webapp contents, repack it (ugly, making Geoserver upgrades incon-
venient)

3. Use separate web server (Apache, IIS) to serve the pages (which requires some knowledge on its own).

If you application needed to make ajax calls back to Geoserver (WFS-T requires that) you would stumble
into another roadblock: ajax calls are sandboxed so that you can call back only the same server that provided
the page making the call. This meant that option #3 was out of the question, and an approach using some
proxying (mod_proxy or similar) was required.

17.5.2 Directly from the Data Directory

With GeoServer you can put your own static files in the www subfolder of the data directory, and have
them served at http:/myhost:8080/geoserver/www. This means you can put in your html, images
and javascript (even a full installation of MapBuilder) and have Geoserver provide them on the web: no
need for unpacking, creating a new webapp, or fiddling with another web server, and no problems with
ajax callback.

Now, this is handy, but has its own limitations:

• we cannot serve files whose MIME type does not get recognized (if you get an HTTP 415 error, this is
because we cannot spot your file MIME type);

• the solution is pure java and does not make use of eventual accelerators such as the Tomcat APR
library, this means if you have tons of static files to be served at high speed, you probably want to
switch back to solution #1 or #3 to get optimal performance.

17.6 WMS Reflector

17.6.1 Overview

Standard WMS requests can be quite long and verbose. For instance the following, which returns an Open-
Layers application with an 800x600 image set to display the feature topp:states, with bounds set to the
northwestern hemisphere by providing the appropriate bounding box.

http://localhost:8080/geoserver/wms?service=WMS&request=GetMap&version=1.1.1&format=application/openlayers&width=800&height=600&srs=EPSG:4326&layers=topp:states&styles=population&bbox=-180,0,0,90

Typing into a browser, or HTML editor, can be quite cumbersome and error prone. The WMS Reflector
solves this problem nicely by using good default values for the options that you do not specify. Using the
reflector one can shorten the above request to:

17.5. Serving Static Files 549

http://tomcat.apache.org/tomcat-5.5-doc/apr.html
http://tomcat.apache.org/tomcat-5.5-doc/apr.html

GeoServer User Manual, Release 2.1-RC4

http://localhost:8080/geoserver/wms/reflect?format=application/openlayers&layers=topp:states&width=800

This request only specifies that you want the reflector (wms/reflect) to return an OpenLayers application
(format=application/openlayers), that you want it to display the feature “topp:states” (layers=topp:states)
and that the width should be 800 pixels (width=800). However, this will not return the exact same value
as above. Instead, the reflector will zoom to the bounds of the feature and return a map that is 800 pixels
wide, but with the height adjusted to the aspect ratio of the feature.

17.6.2 Using the WMS Reflector

To use the WMS reflector all one must do is specify wms/reflect? as opposed to wms? in a request. The
only mandatory parameter to a WMS reflector call is the layers parameter. As stated above the reflector
fills in sensible defaults for the rest of the parameters. The following table lists all the defaults used:

request getmap
service wms
version 1.1.1
format image/png
width 512
height 512 if width is not specified
srs EPSG:4326
bbox bounds of layer(s)

Any of these defaults can be overridden when specifying the request. The styles parameter is derived by
using the default style as configured by GeoServer for each layer specified in the layers parameter.

Any parameter you send with a WMS request is also legitimate when requesting data from the reflector. Its
strength is what it does with the parameters you do not specify, which is explored in the next section.

layers: This is the only mandatory parameter. It is a comma separated list of the layers you wish to include
in your image or OpenLayers application.

format: The default output format is image/png. Alternatives include image/jpeg (good for raster back-
grounds), image/png8 (8 bit colors, smaller files) and image/gif

width: Describes the width of the image, alternatively the size of the map in an OpenLayers. It defaults to
512 pixels and can be calculated based on the height and the aspect ratio of the bounding box.

height: Describes the height of the image, alternatively the map in an OpenLayers. It can be calculated
based on the width and the aspect ratio of the bounding box.

bbox: The bounding box is automatically determined by taking the union of the bounds of the specified
layers. In essence, it determines the extent of the map. By default, if you do not specify bbox, it will show
you everything. If you have one layer of Los Angeles, and another of New York, it show you most of the
United States. The bounding box, automatically set or specified, also determines the aspect ratio of the
map. If you only specify one of width or height, the other will be determined based on the aspect ratio of
the bounding box.

Warning: If you specify height, width and bounding box there are zero degrees of freedom, and if the
aspect ratios do not match your image will be warped.

styles: You can override the default styles by providing a comma separated list with the names of styles
which must be known by the server.

550 Chapter 17. Tutorials

GeoServer User Manual, Release 2.1-RC4

srs: The spatial reference system (SRS) parameter is somewhat difficult. If not specified the WMS Reflector
will use EPSG:4326 / WGS84. It will support the native SRS of the layers as well, provided all layers share
the same one.

Example 1

Request the layer topp:states , it will come back with the default style (demographic), width (512 pixels)
and height (adjusted to aspect ratio).

http://localhost:8080/geoserver/wms/reflect?layers=topp:states

Example 2

Request the layers topp:states and sf:restricted, it will come back with the default styles, and the specified
width (640 pixels) and the height automatically adjusted to the aspect ratio.

http://localhost:8080/geoserver/wms/reflect?layers=topp:states,sf:restricted&width=640

Example 3

In the example above the sf:restricted layer is very difficult to see, because it is so small compared to the
United States. To give the user a chance to get a better view, if they choose, we can return an OpenLayers
application instead. Zoom in on South Dakota (SD) to see the restricted areas.

http://localhost:8080/geoserver/wms/reflect?format=application/openlayers&layers=topp:states,sf:restricted&width=640

Example 4

Now, if you mainly want to show the restricted layer, but also provide the context, you can set the bounding
box for the the request. The easiest way to obtain the coordinates is to use the application in example three
and the coordinates at the bottom right of the map. The coordinates displayed in OpenLayers are x , y , the
reflector service expects to be given bbox=minx,miny,maxx,maxy . Make sure it contains no whitespaces
and users a period (“.”) as the decimal separator. In our case, it will be bbox=-103.929,44.375,-103.633,44.500

http://localhost:8080/geoserver/wms/reflect?format=application/openlayers&layers=topp:states,sf:restricted&width=640&bbox=-103.929,44.375,-103.633,44.500

17.6.3 Outputting to a Webpage

Say you have a webpage and you wish to include a picture that is 400 pixels wide and that shows the layer
topp:states, on this page.

If you want the page to render in the browser before Geoserver is done, you should specify the height and
width of the picture. You could just pick any approximate value, but it may be a good idea to look at the
generated image first and then use those values. In the case of the layer above, the height becomes 169
pixels, so we can specify that as an attribute in the tag:

17.6. WMS Reflector 551

GeoServer User Manual, Release 2.1-RC4

If you are worried that the bounds of the layer may change, so that the height changes relative to the width,
you may also want to specify the height in the URL to the reflector. This ensures the layer will always be
centered and fit on the 400x169 canvas.

The reflector can also create a simple instance of OpenLayers that shows the layers you specify in your
request. One possible application is to turn the image above into a link that refers to the OpenLayers
instance for the same feature, which is especially handy if you think a minority of your users will want to
take closer look. To link to this JavaScript application, you need to specify the output format of the reflector:
format=application/OpenLayers

http://localhost:8080/geoserver/wms/reflect?format=application/openlayers&width=400

The image above then becomes

(The a-tags are on separate lines for clarity, they will in fact result in a space in front and after the image).

17.6.4 OpenLayers in an iframe

Many people do not like iframes, and for good reasons, but they may be appropriate in this case. The
following example will run OpenLayers in an iframe.

<iframe src ="http://localhost:8080/geoserver/wms/reflect?format=application/openlayers&layers=topp:states" width="100%">
</iframe>

Alternatively, you can open OpenLayers in a separate webpage and choose “View Source code” in your
browser. By copying the HTML you can insert the OpenLayers client in your own page without using an
iframe.

17.7 CQL and ECQL

CQL (OGC Common Query Language) is a query language created by OGC for the Catalogue WebServices
specification. Unlike the OGC Filter specification, CQL is plain text, human readable, and thus well suited
for manual construction as opposed to machine generation. However CQL has some serious limitations,
for example it cannot encode id filters and requires an attribute to be on the left side of any comparison
operator. ECQL removes such limitations making for a more flexible language with stronger similarities
with SQL.

GeoServer supports the use of both CQL and ECQL in WMS and WFS requests, as well as in dynamic
symbolizers. When the documentation refers to CQL you can rest assured ECQL syntax can be used as
well (and if not, please report that as a bug).

This tutorial introduces the language by example. If you need a full reference instead have a look at the
ECQL BNF definition on the GeoTools site.

552 Chapter 17. Tutorials

http://www.openlayers.org/
http://www.opengeospatial.org/standards/cat
http://www.opengeospatial.org/standards/cat
http://docs.codehaus.org/display/GEOTOOLS/ECQL+Parser+Design

GeoServer User Manual, Release 2.1-RC4

17.7.1 Getting started

All the following examples are going to use the topp:states sample layer shipped with GeoServer, and
will use the CQL_FILTER vendor parameter to show how the CQL filters alter the map appearance. The
easiest way to follow the tutorial is to open your GeoServer map preview, click on the options button at the
top of the map preview, in order to open the advanced options toolbar, and enter the filter in the CQL box.

Figure 17.16: topp:states preview with advanced toolbar open.

The attributes we’ll be using in the filters are those included in the layer itself. This is an example of attribute
names and values for the state of Colorado:

17.7. CQL and ECQL 553

GeoServer User Manual, Release 2.1-RC4

Attribute states.6
STATE_NAME Colorado
STATE_FIPS 08
SUB_REGION Mtn
STATE_ABBR CO
LAND_KM 268659.501
WATER_KM 960.364
PERSONS 3294394.0
FAMILIES 854214.0
HOUSHOLD 1282489.0
MALE 1631295.0
FEMALE 1663099.0
WORKERS 1233023.0
DRVALONE 1216639.0
CARPOOL 210274.0
PUBTRANS 46983.0
EMPLOYED 1633281.0
UNEMPLOY 99438.0
SERVICE 421079.0
MANUAL 181760.0
P_MALE 0.495
P_FEMALE 0.505
SAMP_POP 512677.0

17.7.2 Simple comparisons

Let’s get started with the simplest example. In CQL basic arithmetic and comparisons do look exactly like
plain text. The filter PERSONS > 15000000 will extract only states that do have more than 15 million
inhabitants:

Figure 17.17: PERSONS > 15000000

To check a range of values a between filter can be used instead: PERSONS BETWEEN 1000000 AND
3000000:

Comparing with text is similar. In order to get only the state of California, the filter will be STATE_NAME

554 Chapter 17. Tutorials

GeoServer User Manual, Release 2.1-RC4

Figure 17.18: PERSONS BETWEEN 1000000 AND 3000000

= ’California’. More complex text comparisons are available using LIKE comparisons. STATE_NAME
LIKE ’N%’ will extract all states starting with an N.

Figure 17.19: STATE_NAME LIKE ‘N%’

It is also possible to compare two attributes with each other. MALE > FEMALE selects the states in which
the male population surpasses the female one (a rare occurrence):

It is also possible to make simple math expressions using the +, -, *, / operators. The following filter
UNEMPLOY / (EMPLOYED + UNEMPLOY) > 0.07 selects all states whose unemployment ratio is above
7% (remember the sample data is very old, don’t draw any conclusion from the results)

17.7.3 Id and list comparisons

If we want to extract only the states with a certain feature id we’ll use the IN filter without specifying any
attribute, as in IN (’states.1’, ’states.12’):

17.7. CQL and ECQL 555

GeoServer User Manual, Release 2.1-RC4

Figure 17.20: MALE > FEMALE

Figure 17.21: UNEMPLOY / (EMPLOYED + UNEMPLOY) > 0.07

556 Chapter 17. Tutorials

GeoServer User Manual, Release 2.1-RC4

Figure 17.22: IN (‘states.1’, ‘states.12’)

If instead we want to extract the states whose name is in a given list we can use the IN filter specifying an
attribute name, like in STATE_NAME IN (’New York’, ’California’, ’Montana’, ’Texas’):

Figure 17.23: STATE_NAME IN (‘New York’, ‘California’, ‘Montana’, ‘Texas’)

17.7.4 Calling filter functions

CQL/ECQL can call any of the filter functions available in GeoServer.

For example, say we want to find all states whose name contains an “m”, regardless of wheter it’s a capital
one, or not. We can call the strToLowerCase to turn all the state names to lowercase and then use a like
comparison: strToLowerCase(STATE_NAME) like ’%m%’:

17.7. CQL and ECQL 557

GeoServer User Manual, Release 2.1-RC4

Figure 17.24: strToLowerCase(STATE_NAME) like ‘%m%’

17.7.5 Geometric filters

CQL provides a full set of geometric filter capabilities. Say, for example, you want to display only the states
that do cross the (-90,40,-60,45) bounding box. The filter will be BBOX(the_geom, -90, 40, -60, 45)

Figure 17.25: BBOX(the_geom, -90, 40, -60, 45)

Conversely we can filter out all of the states that are overlapping that bounding box with the following
filter DISJOINT(the_geom, POLYGON((-90 40, -90 45, -60 45, -60 40, -90 40))):

558 Chapter 17. Tutorials

GeoServer User Manual, Release 2.1-RC4

Figure 17.26: DISJOINT(the_geom, POLYGON((-90 40, -90 45, -60 45, -60 40, -90 40)))

17.8 Using the ImageMosaic plugin

17.8.1 Introduction

This tutorial describes the process of creating a new coverage using the new ImageMosaic plugin. The Im-
ageMosaic plugin is authored by Simone Giannecchini of GeoSolutions, and allows the creation of a mosaic
from a number of georeferenced rasters. The plugin can be used with Geotiffs, as well as rasters accompa-
nied by a world file (.pgw for png files, .jgw for jpg files, etc.). In addition, if imageio-ext GDAL extensions
are properly installed we can also serve all the formats supported by it like MrSID, ECW, JPEG2000, etc...
See GDAL Image Formats for more information on how to install them.

The JAI documentation gives a good description about what a Mosaic does:

The “Mosaic” operation creates a mosaic of two or more source images. This operation could be used for example to
assemble a set of overlapping geospatially rectified images into a contiguous image. It could also be used to create a
montage of photographs such as a panorama.

Briefly the ImageMosaic plugin is responsible for composing together a set of similar raster data, which,
from now on I will call granules. The plugin has, of course, some limitations:

1. All the granules must share the same Coordinate Reference System, no reprojection is performed.
This will always be a constraint.

2. All the granules must share the same ColorModel and SampleModel. This is a limitation/assumption
of the underlying JAI Mosaic operator: it basically means that the granules must share the same pixel
layout and photometric interpretation. It would be quite difficult to overcome this limitation, but to
some extent it could be done. Notice that, in case of colormapped granules, if the various granules
share the same colormap the code will do its best to retain it and try not to expand them in memory.
This can also be controlled via a parameter in the configuration file (se next sections)

3. All the granules must share the same spatial resolution and set of overviews.

Note: About point 3, in the original version of the ImageMosaic plugin this assumption was entirely true
since we made an assumption to work with real tiles coming from a set of adjacent images. Lately we have
been doing a substantial refactoring, so this condition could be removed, but doing so would take some
more work and a few additional options in the configuration file.

17.8. Using the ImageMosaic plugin 559

http://simboss.blogspot.com/
http://ww.geosolutions.it

GeoServer User Manual, Release 2.1-RC4

To be more specific, if we can’t assume that all the granules share the same spatial layout and overviews
set we would not be able to asses the raster dimensions (width and height) the spatial dimensions (grid-to-
world and envelope) and the overviews set to the final mosaic coverage, unless we specify them somehow
or we default to something. As long as we can assume that the various granules share the same spatial
elements as well as the same overviews set we can inherit the first definition for the final mosaic. This
limitation can be overcome with more work.

17.8.2 Granule Index

In order to configure a new CoverageStore and a new Coverage with this plugin, an index file needs to be
generated first in order to associate each granule to its bounding box. Currently we support only a Shapefile
as a proper index, although it would be possible to extend this and use other means to persist the index.

More specifically, the following files are needed:

1. A shapefile that contains enclosing polygons for each raster file. This shapefile needs to have a field
whose values are the paths for the mosaic granules. The path can be either relative to the shape-
file itself or absolute, moreover, while the default name for the shapefile attribute that contains the
granules’ paths is “location”, such a name can be configured to be different (we’ll describe this later
on).

2. A projection file (.prj) for the above-mentioned shapefile.

3. A configuration file (.properties). This file contains properties such as cell size in x and y direction,
the number of rasters for the ImageMosaic coverage, etc.. We will describe this file in the next section.

Later on we will describe the process of creating an index for a set of granules.

17.8.3 Configuration File

The mosaic configuration file is used to store some configuration parameters to control the ImageMosaic
plugin. It is created as part of the mosac creation and usually do not require manual editing. The table
below describes the various elements in this configuration file.

560 Chapter 17. Tutorials

GeoServer User Manual, Release 2.1-RC4

Parame-
ter

Manda-
tory

Description

Enve-
lope2D

Y Contains the envelope for this mosaic formatted as LLCx,LLXy URCx,URCy
(notice the space between the coordinates of the Lower Left Corner and the
coordinates of the Upper Right Corner). An example is
Envelope2D=432500.25,81999.75 439250.25,84999.75

Level-
sNum

Y Represents the number of reduced resolution layers that we currently have for the
granules of this mosaic.

Levels Y Represents the resolutions for the various levels of the granules of this mosaic.
Please remember that we are currently assuming that the number of levels and the
resolutions for such levels are the same across alll the granules.

Name Y Represents the name for this mosaic.
Expand-
ToRGB

N Applies to colormapped granules. Asks the internal mosaic engine to expand the
colormapped granules to RGB prior to mosaicing them. This is needed whenever
the the granulesdo not share the same color map hence a straight composition that
would retain such a color map cannot be performed.

Abso-
lutePath

Y It controls whether or not the path stored inside the “location” attribute represents
an absolute path or a path relative to the location of the shapefile index. Notice
that a relative index ensure much more portability of the mosaic itself. Default
value for this parameter is False, which means relative paths.

Location-
Attribute

N The name of the attribute path in the shapefile index. Default value is location.

17.8.4 Creating Granules Index and Configuration File

The refactored version of the ImageMosaic plugin can be used to create the shapefile index as well as the
mosaic configuration file on the fly without having to rely on gdal or some other similar utility.

If you have a tree of directories containing the granules you want to be able to serve as a mosaic (and
providing that you are respecting the conditions written above) all you need to do is to point the GeoServer
to such a directory and it will create the proper ancillary files by inspecting all the files present in the the
tree of directories starting from the provided input one.

17.8.5 Configuring a Coverage in Geoserver

This is a process very similar to creating a FeatureType. More specifically, one has to perform the steps
higlighted in the sections here below.

Create a new CoverageStore:

1. Go to “Data Panel | Stores” via the web interface and click ‘Add new Store’. Finally click “ImageMo-
saic - Image mosaicking plugin” from “Raster Data Source”:

Figure 17.27: ImageMosaic in the list of raster data stores

1. In order to create a new mosaic is necessary:

17.8. Using the ImageMosaic plugin 561

GeoServer User Manual, Release 2.1-RC4

• To chose the Workspace in the ‘Basic Store Info’ section.

• To give a name in the ‘Basic Store Info’ section.

• To fill the field URL in the ‘Connection Parameters’ section. You have three alternatives:

– Inserting the absolute path of the shapefile.

– Inserting the absolute path of the directory in which the mosaic shapefile index resides, the
GeoServer will look for it and make use of it.

– Inserting the absolute path of a directory where the files you want to mosaic together reside. In
this case GeoServer automatically creates the needed mosaic files (.dbf, .prj, .properties, .shp and
.shx) by inspecting the data of present in the given directory (GeoServer will also find the data
in the subdirectories).

Finally click the “Save” button:

Create a new Coverage using the new ImageMosaic CoverageStore:

1. Go to “Data Panel | Layers” via the web interface and click ‘Add a new resource’. Finally choose the
name of the Store you just created:

Layer Chooser

1. Click on the layer you wish to configure and you will be presented with the Coverage Editor:

Coverage Editor

1. Make sure there is a value for “Native SRS”, then click the Submit button. If the “Native CRS” is
‘UNKNOWN’, you must to declare the SRS specifying him in the “Declared SRS” field. Hopefully
there are no errors.

2. Click on the Save button.

Once you complete the preceding operations it is possible to access the OpenLayers map preview of the
created mosaic.

Warning: In case the created layer appears to be all black it might be that GeoServer has not found no
acceptable granules in the provided ImageMosaic index. It is possible that the shapefile index empty
(not granules where found in in the provided directory) or it might be that the granules’ paths in the
shapefile index are not correct as it might happen in case we have moved an existing index using ab-
solute paths to another place. If the shapefile index paths are not correct the dbf file can be opened
and fixed with, as an instance OpenOffice. As an alternative on could simple delete the index and let
GeoServer recreate it from the root directory.

Tweaking an ImageMosaic CoverageStore:

The Coverage Editor gives users the possibility to set a few control parameters to further tweak and/or
control the mosaic creation process. Such parameters are as follows:

562 Chapter 17. Tutorials

GeoServer User Manual, Release 2.1-RC4

Figure 17.28: Configuring an ImageMosaic data store

17.8. Using the ImageMosaic plugin 563

GeoServer User Manual, Release 2.1-RC4

564 Chapter 17. Tutorials

GeoServer User Manual, Release 2.1-RC4

17.8. Using the ImageMosaic plugin 565

GeoServer User Manual, Release 2.1-RC4

Parameter Description
MaxAl-
lowedTiles

Set the maximum number of the tiles that can be load simulatenously for a request. In
case of a large mosaic this parameter should be opportunely set to not saturating the
server with too many granules loaded at the same time.

Background-
Values

Set the value of the mosaic background. Depending on the nature of the mosaic it is
wise to set a value for the ‘no data’ area (usually -9999). This value is repeated on all the
mosaic bands.

OutputTrans-
parentColor

Set the transparent color for the created mosaic. See below for an example:

OutputTransparentColor parameter configured with ‘no color’

OutputTransparentColor parameter configured with ‘no data’ color

InputTrans-
parentColor

Set the transparent color for the granules prior to mosaicing them in order to control the
superimposition process between them. When GeoServer composes the granules to
satisfy the user request, some of them can overlap some others, therefore, setting this
parameter with the opportune color avoids the overlap of ‘no data’ areas between
granules. See below for an example:

InputTransparentColor parameter not configured

InputTransparentColor parameter configured

AllowMulti-
threading

If true enable tiles multithreading loading. This allows to perform parallelized
loading of the granules that compose the mosaic.

USE_JAI_IMAGEREADControls the low level mechanism to read the granules. If ‘true’ GeoServer will make
use of JAI ImageRead operation and its deferred loading mechanism, if ‘false’
GeoServer will perform direct ImageIO read calls which will result in immediate
loading.

SUG-
GESTED_TILE_SIZE:

Controls the tile size of the input granules as well as the tile size of the output mosaic.
It consists of two positive integersseparated by a comma,like 512,512.

Note: Deferred loading consumes less memory since it uses a streaming approach to load in memory only
the data that is needed for the processing at each time, but, on the other side, may cause problems under
heavy load since it keeps granules’ files open for a long time to support deferred loading.

Note: Immediate loading consumes more memory since it loads in memory the whole requested mosaic
at once, but, on the other side, it usually performs faster and does not leave room for “too many files open”
error conditions as it happens for deferred loading.

17.8.6 Configuration examples

Now we are going to provide a few examples of mosaic configurations to demonstrate how we can make
use of the ImageMosaic parameters.

DEM/Bathymetric mosaic configuration (raw data)

Such a mosaic can be use to serve large amount of data which represents altitude or depth and therefore
does not specify colors directly while it reather needs an SLD to generate pictures. In our case we have a
DEM dataset which consists of a set of raw geotiff files.

The first operation is to create the CoverageStore following the three steps showed in ‘Create a new Cover-
ageStore’ specifying, for example, the path of the shapefile in the ‘URL’ field. Inside the Coverage Editor,
Publishing tab - Default Title section, you can specify the ‘dem’ default style (Default Style combo box) in
order to represent the visualization style of the mosaic. The following is an example style:

566 Chapter 17. Tutorials

GeoServer User Manual, Release 2.1-RC4

17.8. Using the ImageMosaic plugin 567

GeoServer User Manual, Release 2.1-RC4

568 Chapter 17. Tutorials

GeoServer User Manual, Release 2.1-RC4

17.8. Using the ImageMosaic plugin 569

GeoServer User Manual, Release 2.1-RC4

<?xml version="1.0" encoding="ISO-8859-1"?>
<StyledLayerDescriptor version="1.0.0"
xmlns="http://www.opengis.net/sld" xmlns:ogc="http://www.opengis.net/ogc"
xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.opengis.net/sld http://schemas.opengis.net/sld/1.0.0/StyledLayerDescriptor.xsd">
<NamedLayer>
<Name>gtopo</Name>
<UserStyle>

<Name>dem</Name>
<Title>Simple DEM style</Title>
<Abstract>Classic elevation color progression</Abstract>
<FeatureTypeStyle>

<Rule>
<RasterSymbolizer>

<Opacity>1.0</Opacity>
<ColorMap>
<ColorMapEntry color="#000000" quantity="-9999" label="nodata" opacity="1.0" />
<ColorMapEntry color="#AAFFAA" quantity="0" label="values" />
<ColorMapEntry color="#00FF00" quantity="1000" label="values" />
<ColorMapEntry color="#FFFF00" quantity="1200" label="values" />
<ColorMapEntry color="#FF7F00" quantity="1400" label="values" />
<ColorMapEntry color="#BF7F3F" quantity="1600" label="values" />
<ColorMapEntry color="#000000" quantity="2000" label="values" />

</ColorMap>
</RasterSymbolizer>

</Rule>
</FeatureTypeStyle>

</UserStyle>
</NamedLayer>

</StyledLayerDescriptor>

In this way you have a clear distinction between the different intervals of the dataset that compose the
mosaic, like the background and the ‘no data’ area.

Note: The ‘no data’ on the sample mosaic is -9999, on the other side the default background value is for
mosaics is ‘0.0’.

The result is the following.

By setting in opportune ways the other configuration parameters, it is possible to improve at the same time
both the appearance of the mosaic as well as the its performances. As an instance we could:

1. Make the ‘no data’ areas transparent and coherent with the real data. To achieve this we need to
change the opacity of the ‘no data’ ColorMapEntry in the ‘dem’ style to ‘0.0’ and set ‘BackgroundVal-
ues’ parameter at ‘-9999’ so that empty areas will be filled with this value. The result is as follows:

1. Allow multithreaded granules loading. By setting the ‘AllowMultiThreading’ parameter to tru
GeoServer will load the granules in parallell sing multiple threads with a consequent increase of
the performances on some architectures..

The configuration parameters are the followings:

1. MaxAllowedTiles: 2147483647

2. BackgroundValues: -9999.

3. OutputTransparentColor: ‘no color’.

4. InputImageThresholdValue: NaN.

5. InputTransparentColor: ‘no color’.

570 Chapter 17. Tutorials

GeoServer User Manual, Release 2.1-RC4

17.8. Using the ImageMosaic plugin 571

GeoServer User Manual, Release 2.1-RC4

Figure 17.29: Basic configuration

572 Chapter 17. Tutorials

GeoServer User Manual, Release 2.1-RC4

Figure 17.30: Advanced configuration

17.8. Using the ImageMosaic plugin 573

GeoServer User Manual, Release 2.1-RC4

6. AllowMultiThreading: true.

7. USE_JAI_IMAGEREAD: true.

8. SUGGESTED_TILE_SIZE: 512,512.

Aerial Imagery mosaic configuration

In this example we are going to create a mosaic that will serve aerial imagery, RGB geotiffs in this case.
Noticed that since we are talking about visual data, in the Coverage Editor you can use the basic ‘raster’
style, as reported here below, which is just a stub SLD to instruct the GeoServer raster renderer to not do
anything particular in terms of color management:

<?xml version="1.0" encoding="ISO-8859-1"?>
<StyledLayerDescriptor version="1.0.0"
xmlns="http://www.opengis.net/sld" xmlns:ogc="http://www.opengis.net/ogc"
xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.opengis.net/sld http://schemas.opengis.net/sld/1.0.0/StyledLayerDescriptor.xsd">
<NamedLayer>
<Name>raster</Name>
<UserStyle>

<Name>raster</Name>
<Title>Raster</Title>
<Abstract>A sample style for rasters, good for displaying imagery </Abstract>
<FeatureTypeStyle>

<FeatureTypeName>Feature</FeatureTypeName>
<Rule>
<RasterSymbolizer>
<Opacity>1.0</Opacity>

</RasterSymbolizer>
</Rule>

</FeatureTypeStyle>
</UserStyle>

</NamedLayer>
</StyledLayerDescriptor>

The result is the following.

Note: Those ugly black areas, are the resulting of applying the eafalt mosaic parameters to a mosaic that
does not entirey cover its bounding box. The areas within the BBOX that are not covered with data will de-
fault to a value of 0 on each band. Since this mosaic is RGB wecan simply set the OutputTransparentCOlor
to 0,0,0 in order to get back transparent fills for the BBOX.

The various parameters can be set as follows:

1. MaxAllowedTiles: 2147483647

2. BackgroundValues: default value.

3. OutputTransparentColor: #000000 (to make transparent the background).

4. InputImageThresholdValue: NaN.

5. InputTransparentColor: ‘no color’.

6. AllowMultiThreading: true (in this way GeoServer manages the loading of the tiles in parallel mode
with a consequent increase of the performances).

7. USE_JAI_IMAGEREAD: true.

8. SUGGESTED_TILE_SIZE: 512,512.

574 Chapter 17. Tutorials

GeoServer User Manual, Release 2.1-RC4

Figure 17.31: Basic configuration

17.8. Using the ImageMosaic plugin 575

GeoServer User Manual, Release 2.1-RC4

The results is the following:

Figure 17.32: Advanced configuration

Scanned Maps mosaic configuration

In this case we want to show how to serve scanned maps (mostly B&W images) via a GeoServer mosaic.

In the Coverage Editor you can use the basic ‘raster’ style as shown above since there is not need to use any
of the advanced RasterSymbolizer capabilities.

The result is the following.

This mosaic, formed by two single granules, shows a typical case where the ‘no data’ collar areas of the
granules overlap, as it is shown in the picture above. In this case we can use the ‘InputTrasparentColor’
parameter at to make the collar areas disappear during the superimposition process, as instance, in this
case, by using the ‘#FFFFFF’ ‘InputTrasparentColor’.

This is the result:

The final configuration parameters are the followings:

576 Chapter 17. Tutorials

GeoServer User Manual, Release 2.1-RC4

Figure 17.33: Basic configuration

Figure 17.34: Advanced configuration

17.8. Using the ImageMosaic plugin 577

GeoServer User Manual, Release 2.1-RC4

1. MaxAllowedTiles: 2147483647

2. BackgroundValues: default value.

3. OutputTransparentColor: ‘no color’.

4. InputImageThresholdValue: NaN.

5. InputTransparentColor: #FFFFFF.

6. AllowMultiThreading: true (in this way GeoServer manages the loading of the tiles in parallel mode
with a consequent increase of the performances).

7. USE_JAI_IMAGEREAD: true.

8. SUGGESTED_TILE_SIZE: 512,512.

17.9 Building and using an image pyramid

GeoServer can efficiently deal with large TIFF with overviews, as long as the TIFF is below the 2GB size
limit.

Once the image size goes beyond such limit it’s time to start considering an image pyramid instead.

An image pyramid builds multiple mosaics of images, each one at a different zoom level, making it so that
each tile is stored in a separate file. This comes with a composition overhead to bring back the tiles into
a single image, but can speed up image handling as each overview is tiled, and thus a sub-set of it can be
accessed efficiently (as opposed to a single GeoTIFF, where the base level can be tiled, but the overviews
never are).

This tutorial shows how to build an image pyramid with open source utilities and how to load it into
GeoServer. The tutorial assumes you’re running at least GeoServer 2.0.2.

17.9.1 Building a pyramid

For this tutorial we have prepared a sample BlueMarble TNG subset in GeoTIFF form. The image is tiled
and JPEG compressed, without overviews. Not exactly what you’d want to use for high performance data
serving, but good for redistribution and as a starting point to build a pyramid.

In order to build the pyramid we’ll use the gdal_retile.py utility, part of the GDAL command line utilities
and available for various operating systems (if you’re using Microsoft Windows look for FWTools).

The following commands will build a pyramid on disk:

mkdir bmpyramid
gdal_retile.py -v -r bilinear -levels 4 -ps 2048 2048 -co "TILED=YES" -co "COMPRESS=JPEG" -targetDir bmpyramid bmreduced.tiff

The gdal_retile.py user guide provides a detailed explanation for all the possible parameters, here is a
description of the ones used in the command line above:

• -v: verbose output, allows the user to see each file creation scroll by, thus knowing progress is being
made (a big pyramid construction can take hours)

• -r bilinear: use bilinear interpolation when building the lower resolution levels. This is key to get good
image quality without asking GeoServer to perform expensive interpolations in memory

• -levels 4: the number of levels in the pyramid

• -ps 2048 2048: each tile in the pyramid will be a 2048x2048 GeoTIFF

578 Chapter 17. Tutorials

http://gridlock.opengeo.org/data/bmreduced.tiff
http://www.gdal.org/gdal_retile.html
http://fwtools.maptools.org/
http://www.gdal.org/gdal_retile.html

GeoServer User Manual, Release 2.1-RC4

• -co “TILED=YES”: each GeoTIFF tile in the pyramid will be inner tiled

• -co “COMPRESS=JPEG”: each GeoTIFF tile in the pyramid will be JPEG compressed (trades small size
for higher performance, try out it without this parameter too)

• -targetDir bmpyramid: build the pyramid in the bmpyramid directory. The target directory must exist
and be empty

• bmreduced.tiff : the source file

This will produce a number of TIFF files in bmpyramid along with the sub-directories 1, 2, 3, and 4.

Once that is done, and assuming the GeoServer image pyramid plug-in is already installed, it’s possible to
create the coverage store by pointing at the directory containing the pyramid and clicking save:

Figure 17.35: Configuring a image pyramid store

When clicking save the store will look into the directory, recognize a gdal_retile generated structure and
perform some background operations:

• move all tiff files in the root to a newly create directory 0

• create an image mosaic in all sub-directories (shapefile index plus property file)

• create the root property file describing the whole pyramid structure

Once that is done the user will be asked to choose a coverage, which will be named after the pyramid root
directory:

17.9. Building and using an image pyramid 579

GeoServer User Manual, Release 2.1-RC4

Figure 17.36: Choosing the coverage for publishing

Publish the layer, and then setup the layer parameter USE_JAI_IMAGEREAD to false to get better scalability:

Figure 17.37: Tuning the pyramid parameters

Submit and go to the preview, the pyramid should be ready to use:

17.9.2 Notes on big pyramids

The code that is auto-creating the pyramid indexes and metadata files might take time to run, especially if:

• the pyramid zero level is composed of many thousands of files

• the system is busy with the disk already and that results in higher times to move all the files to the 0
directory

580 Chapter 17. Tutorials

GeoServer User Manual, Release 2.1-RC4

Figure 17.38: Previewing the pyramid

17.9. Building and using an image pyramid 581

GeoServer User Manual, Release 2.1-RC4

If the delay is too high the request to create the store will time out and might break the pyramid creation.
So, in case of very big pyramids consider loosing some of the comfort and creating the 0 directory and
moving the files by hand:

cd bmpyramid
mkdir 0
mv *.tiff 0

17.10 Storing a coverage in a JDBC database

Warning: The screenshots on this tutorial have not yet been updated for the 2.0.x user interface. But
most all the rest of the information should be valid, and the user interface is roughly the same, but a bit
more easy to use.

17.10.1 Introduction

This tutorial describes the process of storing a coverage along with its pyramids in a jdbc database. The
ImageMosaic JDBC plugin is authored by Christian Mueller and is part of the geotools library.

The full documentation is available here:http://docs.codehaus.org/display/GEOTDOC/Image+Mosaicing+Pyramidal+JDBC+Plugin

This tutorial will show one possible scenario, explaining step by step what to do for using this module in
GeoServer (since Version 1.7.2)

17.10.2 Getting Started

We use postgis/postgres as database engine, a database named “gis” and start with an image from open-
streetmap. We also need this utility http://www.gdal.org/gdal_retile.html . The best way to install with
all dependencies is downloading from here http://fwtools.maptools.org/

582 Chapter 17. Tutorials

http://docs.codehaus.org/display/GEOTDOC/Image+Mosaicing+Pyramidal+JDBC+Plugin
http://www.gdal.org/gdal_retile.html
http://fwtools.maptools.org/

GeoServer User Manual, Release 2.1-RC4

Create a working directory, lets call it working ,download this image with a right mouse click (Image save
as ...) and save it as start_rgb.png

Check your image with:

gdalinfo start_rgb.png

This image has 4 Bands (Red,Green,Blue,Alpha) and needs much memory. As a rule, it is better to use
images with a color table. We can transform with rgb2pct (rgb2pct.py on Unix).:

rgb2pct -of png start_rgb.png start.png

Compare the sizes of the 2 files.

Afterwards, create a world file start.wld in the working directory with the following content.:

0.0075471698
0.0000000000
0.0000000000
-0.0051020408
8.9999995849
48.9999999796

17.10.3 Preparing the pyramids and the tiles

If you are new to tiles and pyramids, take a quick look here
http://star.pst.qub.ac.uk/idl/Image_Tiling.html

17.10. Storing a coverage in a JDBC database 583

http://star.pst.qub.ac.uk/idl/Image_Tiling.html

GeoServer User Manual, Release 2.1-RC4

17.10.4 How many pyramids are needed ?

Lets do a simple example. Given an image with 1024x1024 pixels and a tile size with 256x256 pixels.We can
calculate in our brain that we need 16 tiles. Each pyramid reduces the number of tiles by a factor of 4. The
first pyramid has 16/4 = 4 tiles, the second pyramid has only 4/4 = 1 tile.

Solution: The second pyramid fits on one tile, we are finished and we need 2 pyramids.

The formula for this:

number of pyramids = log(pixelsize of image) / log(2) - log (pixelsize of tile) / log(2).

Try it: Go to Google and enter as search term “log(1024)/log(2) - log(256)/log(2)” and look at the result.

If your image is 16384 pixels , and your tile size is 512 pixels, it is

log(16384)/log(2) - log(512)/log(2) = 5

If your image is 18000 pixels, the result = 5.13570929. Thake the floor and use 5 pyramids. Remember, the
last pyramid reduces 4 tiles to 1 tile, so this pyramid is not important.

If your image is 18000x12000 pixel, use the bigger dimension (18000) for the formula.

For creating pyramids and tiles, use http://www.gdal.org/gdal_retile.html from the gdal project.

The executeable for Windows users is gdal_retile.bat or only gdal_retile, Unix users call gdal_retile.py

Create a subdirectory tiles in your working directory and execute within the working directory:

gdal_retile -co "WORLDFILE=YES" -r bilinear -ps 128 128 -of PNG -levels 2 -targetDir tiles start.png

What is happening ? We tell gdal_retile to create world files for our tiles (-co “WORLDFILE=YES”), use
bilinear interpolation (-r bilinear), the tiles are 128x128 pixels in size (-ps 128 128) , the image format should
be PNG (-of PNG), we need 2 pyramid levels (-levels 2) ,the directory for the result is tiles (-targetDir
tiles) and the source image is start.png.

Note: A few words about the tile size. 128x128 pixel is proper for this example. Do not use such small sizes
in a production environment. A size of 256x256 will reduce the number of tiles by a factor of 4, 512x512 by
a factor of 16 and so on. Producing too much tiles will degrade performance on the database side (large
tables) and will also raise cpu usage on the client side (more image operations).

Now you should have the following directories

• working containing start.png , start.wld and a subdirectory tiles.

• working/tiles containing many *.png files and associated *.wld files representing the tiles of
start.png

• working/tiles/1 containing many *.png files and associated *.wld files representing the tiles of
the first pyramid

• working/tiles/2 containing many *.png files and associated *.wld files representing the tiles of
the second pyramid

17.10.5 Configuring the new map

The configuration for a map is done in a xml file. This file has 3 main parts.

1. The connect info for the jdbc driver

2. The mapping info for the sql tables

3. Configuration data for the map

584 Chapter 17. Tutorials

http://www.gdal.org/gdal_retile.html

GeoServer User Manual, Release 2.1-RC4

Since the jdbc connect info and the sql mapping may be reused by more than one map, the best practice is
to create xml fragments for both of them and to use xml entity references to include them into the map xml.

First, find the location of the GEOSERVER_DATA_DIR. This info is contained in the log file when starting
GeoServer.:

- GEOSERVER_DATA_DIR: /home/mcr/geoserver-1.7.x/1.7.x/data/release

Put all configuration files into the coverages subdirectory of your GeoServer data directory. The location
in this example is

/home/mcr/geoserver-1.7.x/1.7.x/data/release/coverages

1. Create a file connect.postgis.xml.inc with the following content

<connect>
<!-- value DBCP or JNDI -->
<dstype value="DBCP"/>
<!-- <jndiReferenceName value=""/> -->
<username value="postgres" />
<password value="postgres" />
<jdbcUrl value="jdbc:postgresql://localhost:5432/gis" />
<driverClassName value="org.postgresql.Driver"/>
<maxActive value="10"/>
<maxIdle value="0"/>

</connect>

The jdbc user is “postgres”, the password is “postgres”, maxActive and maxIdle are parameters of the
apache connection pooling, jdbcUrl and driverClassName are postgres specific. The name of the database
is “gis”.

If you deploy GeoServer into a J2EE container capable of handling jdbc data sources, a better approach is

<connect>
<!-- value DBCP or JNDI -->
<dstype value="JNDI"/>
<jndiReferenceName value="jdbc/mydatasource"/>

</connect>

For this tutorial, we do not use data sources provided by a J2EE container.

1. The next xml fragment to create is mapping.postgis.xml.inc

<!-- possible values: universal,postgis,db2,mysql,oracle -->
<spatialExtension name="postgis"/>
<mapping>

<masterTable name="mosaic" >
<coverageNameAttribute name="name"/>
<maxXAttribute name="maxX"/>
<maxYAttribute name="maxY"/>
<minXAttribute name="minX"/>
<minYAttribute name="minY"/>
<resXAttribute name="resX"/>
<resYAttribute name="resY"/>
<tileTableNameAtribute name="TileTable" />
<spatialTableNameAtribute name="SpatialTable" />

</masterTable>

17.10. Storing a coverage in a JDBC database 585

GeoServer User Manual, Release 2.1-RC4

<tileTable>
<blobAttributeName name="data" />
<keyAttributeName name="location" />

</tileTable>
<spatialTable>

<keyAttributeName name="location" />
<geomAttributeName name="geom" />
<tileMaxXAttribute name="maxX"/>
<tileMaxYAttribute name="maxY"/>
<tileMinXAttribute name="minX"/>
<tileMinYAttribute name="minY"/>

</spatialTable>
</mapping>

The first element <spatialExtension> specifies which spatial extension the module should use. “uni-
versal” means that there is no spatial db extension at all, meaning the tile grid is not stored as a geometry,
using simple double values instead.

This xml fragment describes 3 tables, first we need a master table where information for each pyramid level
is saved. Second and third, the attribute mappings for storing image data, envelopes and tile names are
specified. To keep this tutorial simple, we will not further discuss these xml elements. After creating the
sql tables things will become clear.

1. Create the configuration xml osm.postgis.xml for the map (osm for “open street map”)

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<!DOCTYPE ImageMosaicJDBCConfig [

<!ENTITY mapping PUBLIC "mapping" "mapping.postgis.xml.inc">
<!ENTITY connect PUBLIC "connect" "connect.postgis.xml.inc">]>

<config version="1.0">
<coverageName name="osm"/>
<coordsys name="EPSG:4326"/>
<!-- interpolation 1 = nearest neighbour, 2 = bilinear, 3 = bicubic -->
<scaleop interpolation="1"/>
<verify cardinality="false"/>
&mapping;
&connect;

</config>

This is the final xml configuration file, including our mapping and connect xml fragment. The coverage
name is “osm”, CRS is EPSG:4326. <verify cardinality="false"> means no check if the number of
tiles equals the number of rectangles stored in the db. (could be time consuming in case of large tile sets).

This configuration is the hard stuff, now, life becomes easier :-)

17.10.6 Using the java ddl generation utility

The full documentation is here: http://docs.codehaus.org/display/GEOTDOC/Using+the+java+ddl+generation+utility

To create the proper sql tables, we can use the java ddl generation utility. This utility is included in the
gt-imagemosaic-jdbc-version.jar. Assure that this jar file is in your WEB-INF/lib directory of
your GeoServer installation.

Change to your working directory and do a first test:

java -jar <your_geoserver_install_dir>/webapps/geoserver/WEB-INF/lib/gt-imagemosaic-jdbc-{version}.jar

586 Chapter 17. Tutorials

http://docs.codehaus.org/display/GEOTDOC/Using+the+java+ddl+generation+utility

GeoServer User Manual, Release 2.1-RC4

The reply should be:

Missing cmd import | ddl

Create a subdirectory sqlscripts in your working directory. Within the working directory, execute:

java -jar <your_geoserver_install_dir>/webapps/geoserver/WEB-INF/lib/gt-imagemosaic-jdbc-{version}.jar ddl -config <your geoserver data dir >/coverages/osm.postgis.xml -spatialTNPrefix tileosm -pyramids 2 -statementDelim ";" -srs 4326 -targetDir sqlscripts

Explanation of parameters

parameter description
ddl create ddl statements
-config the file name of our osm.postgis.xml file
-pyramids number of pyramids we want
-statementDelim The SQL statement delimiter to use
-srs The db spatial reference identifier when using a spatial extension
-targetDir output directory for the scripts
-spatialTNPrefix A prefix for tablenames to be created.

In the directory working/sqlscripts you will find the following files after execution:

createmeta.sql dropmeta.sql add_osm.sql remove_osm.sql

Note: IMPORTANT:

Look into the files createmeta.sql and add_osm.sql and compare them with the content of
mapping.postgis.xml.inc. If you understand this relationship, you understand the mapping.

The generated scripts are only templates, it is up to you to modify them for better performance or other
reasons. But do not break the relationship to the xml mapping fragment.

17.10.7 Executing the DDL scripts

For user “postgres”, databae “gis”, execute in the following order:

psql -U postgres -d gis -f createmeta.sql
psql -U postgres -d gis -f add_osm.sql

To clean your database, you can execute remove_osm.sql and dropmeta.sql after finishing the tutorial.

17.10.8 Importing the image data

The full documentation is here: http://docs.codehaus.org/display/GEOTDOC/Using+the+java+import+utility

First, the jdbc jar file has to be in the lib/ext directory of your java runtime. In my case I had to copy
postgresql-8.1-407.jdbc3.jar.

Change to the working directory and execute:

java -jar <your_geoserver_install_dir>/webapps/geoserver/WEB-INF/lib/gt-imagemosaic-jdbc-{version}.jar import -config <your geoserver data dir>/coverages/osm.postgis.xml -spatialTNPrefix tileosm -tileTNPrefix tileosm -dir tiles -ext png

This statement imports your tiles including all pyramids into your database.

17.10. Storing a coverage in a JDBC database 587

http://docs.codehaus.org/display/GEOTDOC/Using+the+java+import+utility

GeoServer User Manual, Release 2.1-RC4

17.10.9 Configuring GeoServer

Start GeoServer and log in.Under Config→WCS→ CoveragePlugins you should see

If there is no line starting with “ImageMosaicJDBC”, the gt-imagemosiac-jdbc-version.jar file is
not in your WEB-INF/lib folder. Go to Config→Data→CoverageStores→New and fill in the formular

Press New and fill in the formular

588 Chapter 17. Tutorials

GeoServer User Manual, Release 2.1-RC4

Press Submit.

Press Apply, then Save to save your changes.

Next select Config→Data→Coverages→New and select “osm”.

Press New and you will enter the Coverage Editor. Press Submit, Apply and Save.

Under Welcome→Demo→Map Preview you will find a new layer “topp:osm”. Select it and see the results

17.10. Storing a coverage in a JDBC database 589

GeoServer User Manual, Release 2.1-RC4

If you think the image is stretched, you are right. The reason is that the original image is georeferenced
with EPSG:900913, but there is no support for this CRS in postigs (at the time of this writing). So I used
EPSG:4326. For the purpose of this tutorial, this is ok.

17.10.10 Conclusion

There are a lot of other configuration possibilities for specific databases. This tutorial shows a quick cook-
book to demonstrate some of the features of this module. Follow the links to the full documentation to dig
deeper, especially if you are concerned about performance and database design.

If there is something which is missing, proposals are welcome.

17.11 Using the GeoTools feature-pregeneralized module

Warning: The screenshots on this tutorial have not yet been updated for the 2.0.x user interface. But
most all the rest of the information should be valid, and the user interface is roughly the same, but a bit
more easy to use.

17.11.1 Introduction

This tutorial shows how to use the geotools feature-pregeneralized module in GeoServer. The feature-
pregeneralized module is used to improve performance and lower memory usage and IO traffic.

Note: Vector generalization reduces the number of vertices of a geometry for a given purpose. It makes no
sense drawing a polygon with 500000 vertices on a screen. A much smaller number of vertices is enough to
draw a topological correct picture of the polygon.

This module needs features with already generalized geometries, selecting the best fit geometry on demand.

The full documentation is available here:http://docs.codehaus.org/display/GEOTDOC/Feature-
Pregeneralized

This tutorial will show two possible scenarios, explaining step by step what to do for using this module in
GeoServer.

590 Chapter 17. Tutorials

http://docs.codehaus.org/display/GEOTDOC/Feature-Pregeneralized
http://docs.codehaus.org/display/GEOTDOC/Feature-Pregeneralized

GeoServer User Manual, Release 2.1-RC4

17.11.2 Getting Started

First, find the location of the GEOSERVER_DATA_DIR. This info is contained in the log file when starting
GeoServer.:

- GEOSERVER_DATA_DIR: /home/mcr/geoserver-1.7.x/1.7.x/data/release

Within this directory, we have to place the shape files. There is already a sub directory data which will be
used. Within this sub directory, create a directory streams.

Within GEOSERVER_DATA_DIR/data/streams create another sub directory called 0. (0 meaning “no
generalized geometries”).

This tutorial is based on on a shape file, which you can download from here Streams. Unzip this file into
GEOSERVER_DATA_DIR/data/streams/0.

Look for the WEB-INF/lib/ directory of your GeoServer installation. There must be a file called
gt-feature-pregeneralized-version-jar. This jar file includes a tool for generalizing shape files.
Open a cmd line and execute the following:

cd <GEOSERVER_DATA_DIR>/data/streams/0
java -jar <GEOSERVER_INSTALLATION>/WEB-INF/lib/gt-feature-pregeneralized-{version}.jar generalize 0/streams.shp . 5,10,20,50

You should see the following output:

Shape file 0/streams.shp
Target directory .
Distances 5,10,20,50
% |################################|

Now there are four additional directories 5.0 , 10.0 , 20.0 , 50.0 . Look at the size of files with the
extension shp within these directories, increasing the generalization distance reduces the file size.

Note: The generalized geometries can be stored in additional properties of a feature or the features can be
duplicated. Mixed variations are also possible. Since we are working with shape files we have to duplicate
the features.

There are two possibilities how we can deploy our generalized shape files.

1. Deploy hidden (not visible to the user)

2. Deploy each generalized shape file as a separate GeoServer feature

17.11.3 Hidden Deployment

First we need a XML config file

<?xml version="1.0" encoding="UTF-8"?>
<GeneralizationInfos version="1.0">

<GeneralizationInfo dataSourceName="file:data/streams/0/streams.shp" featureName="GenStreams" baseFeatureName="streams" geomPropertyName="the_geom">
<Generalization dataSourceName="file:data/streams/5.0/streams.shp" distance="5" featureName="streams" geomPropertyName="the_geom"/>
<Generalization dataSourceName="file:data/streams/10.0/streams.shp" distance="10" featureName="streams" geomPropertyName="the_geom"/>
<Generalization dataSourceName="file:data/streams/20.0/streams.shp" distance="20" featureName="streams" geomPropertyName="the_geom"/>
<Generalization dataSourceName="file:data/streams/50.0/streams.shp" distance="50" featureName="streams" geomPropertyName="the_geom"/>

</GeneralizationInfo>
</GeneralizationInfos>

17.11. Using the GeoTools feature-pregeneralized module 591

GeoServer User Manual, Release 2.1-RC4

Save this file as geninfo_shapefile.xml into GEOSERVER_DATA_DIR/data/streams.

Note: The dataSourceName attribute in the XML config is not interpreted as a name, it could be the
URL for a shape file or for a property file containing properties for data store creation (e. g. jdbc connect
parameters). Remember, this is a hidden deployment and no names are needed. The only official name is
the value of the attribute featureName in the GeneralizationInfo Element.

Start GeoServer and go to Config→Data→DataStores→New and fill in the form

Press Submit.

The next form you see is

Note: RepositoryClassName and GeneralizationInfosProviderClassName have default values which
suit for GeoTools, not for GeoServer. Change GeoTools to GeoServer in the package names to instantiate
the correct objects for GeoServer. GeneralizationInfosProviderParam could be an URL or a datastore from
the Geoserver catalog. A datastore is referenced by using workspacename:datastorename. This makes sense if
you have your own implementation for the GeneralizationInfosProvider interface and this implementa-
tion reads the infos from a database.

The configuration should look like this

592 Chapter 17. Tutorials

GeoServer User Manual, Release 2.1-RC4

Press Submit, afterward a form for the feature type opens.

Alter the Style to line, SRS is 26713 and press the Generate button labeled by Bounding Box.

Afterward, press Submit, Apply and Save.

Examine the result by pressing “My GeoServer, Demo and Map Preview. In this list there must be an entry
topp:GenStreams. Press it and you will see

17.11. Using the GeoTools feature-pregeneralized module 593

GeoServer User Manual, Release 2.1-RC4

Now start zooming in and out and look at the log file of GeoServer. If the deployment is correct you should
see something like this:

May 20, 2009 4:53:05 PM org.geotools.data.gen.PreGeneralizedFeatureSource logDistanceInfo
INFO: Using generalizsation: file:data/streams/20.0/streams.shp streams the_geom 20.0
May 20, 2009 4:53:41 PM org.geotools.data.gen.PreGeneralizedFeatureSource logDistanceInfo
INFO: Using generalizsation: file:data/streams/5.0/streams.shp streams the_geom 5.0
May 20, 2009 4:54:08 PM org.geotools.data.gen.PreGeneralizedFeatureSource logDistanceInfo
INFO: Using generalizsation: file:data/streams/5.0/streams.shp streams the_geom 5.0
May 20, 2009 4:54:09 PM org.geotools.data.gen.PreGeneralizedFeatureSource logDistanceInfo
INFO: Using generalizsation: file:data/streams/20.0/streams.shp streams the_geom 20.0

17.11.4 Public Deployment

First we have to configure all our shape files

594 Chapter 17. Tutorials

GeoServer User Manual, Release 2.1-RC4

The Feature Data Set ID for the other shape files is

1. Streams_5

2. Streams_10

3. Streams_20

4. Streams_50

The URL needed for the other shape files

1. file:data/streams/5.0/streams.shp

2. file:data/streams/10.0/streams.shp

3. file:data/streams/20.0/streams.shp

4. file:data/streams/50.0/streams.shp

17.11. Using the GeoTools feature-pregeneralized module 595

GeoServer User Manual, Release 2.1-RC4

Each feature needs an Alias, here it is streams_0. For the other shape files use

1. streams_5

2. streams_10

3. streams_20

4. streams_50

Check the result by pressing My GeoServer, Demo and Map Preview. You should see your additional
layers.

No we need another XML configuration file

<?xml version="1.0" encoding="UTF-8"?>
<GeneralizationInfos version="1.0">

<GeneralizationInfo dataSourceNameSpace="topp" dataSourceName="Streams_0" featureName="GenStreams2" baseFeatureName="streams" geomPropertyName="the_geom">
<Generalization dataSourceNameSpace="topp" dataSourceName="Streams_5" distance="5" featureName="streams" geomPropertyName="the_geom"/>
<Generalization dataSourceNameSpace="topp" dataSourceName="Streams_10" distance="10" featureName="streams" geomPropertyName="the_geom"/>
<Generalization dataSourceNameSpace="topp" dataSourceName="Streams_20" distance="20" featureName="streams" geomPropertyName="the_geom"/>
<Generalization dataSourceNameSpace="topp" dataSourceName="Streams_50" distance="50" featureName="streams" geomPropertyName="the_geom"/>

</GeneralizationInfo>
</GeneralizationInfos>

Save this file as geninfo_shapefile2.xml into GEOSERVER_DATA_DIR/data/streams.

Create the pregeneralized datastore

596 Chapter 17. Tutorials

GeoServer User Manual, Release 2.1-RC4

Now we use the CatalogRepository class to find our needed data stores

Last step

17.11. Using the GeoTools feature-pregeneralized module 597

GeoServer User Manual, Release 2.1-RC4

In the Map Preview you should find topp:GenStreams2 and all other generalizations. Test in the same
manner we discussed in the hidden deployment and you should see something like this in the GeoServer
log:

May 20, 2009 6:11:06 PM org.geotools.data.gen.PreGeneralizedFeatureSource logDistanceInfo
INFO: Using generalizsation: Streams_20 streams the_geom 20.0
May 20, 2009 6:11:08 PM org.geotools.data.gen.PreGeneralizedFeatureSource logDistanceInfo
INFO: Using generalizsation: Streams_10 streams the_geom 10.0
May 20, 2009 6:11:12 PM org.geotools.data.gen.PreGeneralizedFeatureSource logDistanceInfo
INFO: Using generalizsation: Streams_10 streams the_geom 10.0

17.11.5 Conclusion

This is only a very simple example using shape files. The plugin architecture allows you to get your data
and generalizations from anywhere. The used dataset is a very small one, so you will not feel a big differ-
ence in response time. Having big geometries (in the sense of many vertices) and creating maps with some
different layers will show the difference.

598 Chapter 17. Tutorials

GeoServer User Manual, Release 2.1-RC4

17.12 Setting up a JNDI connection pool with Tomcat

Warning: The screenshots on this tutorial have not yet been updated for the 2.0.x user interface. But
most all the rest of the information should be valid, and the user interface is roughly the same.

This tutorial walks the reader through the procedures necessary to setup a Oracle JNDI connection pool in
Tomcat 6 and how to retrieve it from GeoServer

17.12.1 Tomcat setup

In order to setup a connection pool Tomcat needs a JDBC driver and the necessary pool configurations.

First off, you need to find the JDBC driver for your database. Most often it is dis-
tributed on the web site of your DBMS provider, or available in the installed version of
your database. For example, a Oracle XE install on a Linux system provides the driver
at /usr/lib/oracle/xe/app/oracle/product/10.2.0/server/jdbc/lib/ojdbc14.jar, and
that file needs to be copied into Tomcat shared libs directory, TOMCAT_HOME/lib

Once that is done, the Tomcat configuration file TOMCAT_HOME/conf/context.xml needs to be edited
in order to setup the connection pool. In the case of a local Oracle XE the setup might look like:

<Context>
...
<Resource name="jdbc/oralocal" auth="Container" type="javax.sql.DataSource"

url="jdbc:oracle:thin:@localhost:1521:xe"
driverClassName="oracle.jdbc.driver.OracleDriver"
username="dbuser" password="dbpasswd"
maxActive="20" maxIdle="3" maxWait="10000"
poolPreparedStatements="true"
maxOpenPreparedStatements="100"
validationQuery="SELECT SYSDATE FROM DUAL" />

</Context>

The example sets up a connection pool connecting to the local Oracle XE instance. The pool configuration
shows is quite full fledged:

• at most 20 active connections (max number of connection that will ever be used in parallel)

• at most 3 connections kept in the pool unused

• prepared statement pooling (very important for good performance)

• at most 100 prepared statements in the pool

• a validation query that double checks the connection is still alive before actually using it (this is not
necessary if there is guarantee the connections will never drop, either due to the server forcefully
closing them, or to network/maintenance issues).

For more information about the possible parameters and their values refer to the DBCP documentation.

17.12.2 GeoServer setup

To allow a web application reference to a JNDI resource its web.xml file must be modi-
fied so that the reference is explicit. Following the above example, we have to modify

17.12. Setting up a JNDI connection pool with Tomcat 599

http://commons.apache.org/dbcp/configuration.html

GeoServer User Manual, Release 2.1-RC4

TOMCAT_HOME/webapps/geoserver/WEB-INF/web.xml and add at its very end the following dec-
laration:

<web-app>
...
<resource-ref>
<description>Oracle Datasource</description>
<res-ref-name>jdbc/oralocal</res-ref-name>
<res-type>javax.sql.DataSource</res-type>
<res-auth>Container</res-auth>

</resource-ref>
</web-app>

Once that is done, it is possible to login into the GeoServer web administration interface and configure the
datastore.

First, choose the Oracle (JNDI) datastore and give it a name:

Figure 17.39: Choosing a JNDI enabled datastore

Then, configure the connection parameters so that the JNDI path matches the one specified in the Tomcat
configuration:

When you are doing this, make sure the schema is properly setup, or the datastore will list all the tables it
can find in the schema it can access. In the case of Oracle the schema is usually the user name, upper cased.

Once the datastore is accepted the GeoServer usage proceeds as normal.

600 Chapter 17. Tutorials

GeoServer User Manual, Release 2.1-RC4

Figure 17.40: Configuring the JNDI connection

17.12. Setting up a JNDI connection pool with Tomcat 601

GeoServer User Manual, Release 2.1-RC4

602 Chapter 17. Tutorials

CHAPTER 18

Community

This section is devoted to GeoServer community modules. Community modules are considered “pending”
in that they are not officially part of the GeoServer releases. They are however built along with the nightly
builds, so you can download and play with them.

Warning: Community modules are generally considered experimental in nature and are often under
constant development. For that reason documentation in this section should not be considered solid or
final and will be subject to change.

18.1 Control flow module

The control-flow module for GeoServer allows the administrator to control the amount of concurrent
requests actually executing inside the server. This kind of control is useful for a number of reasons:

• Performance: tests show that, with local data sources, the maximum throughput in GetMap requests is
achieved when allowing at most 2 times the number of CPU cores requests to run in parallel.

• Resource control: requests such as GetMap can use a significant amount of memory. The WMS request
limits allow to control the amount of memory used per request, but an OutOfMemoryError is still
possible if too many requests run in parallel. By controlling also the amount of requests executing it’s
possible to limit the total amount of memory used below the memory that was actually given to the
Java Virtual Machine.

• Fairness: a single user should not be able to overwhelm the server with a lot of requests, leaving other
users with tiny slices of the overall processing power.

The control flow method does not normally reject requests, it just queues up those in excess and executes
them late. However, it’s possible to configure the module to reject requests that have been waited in queue
for too long.

18.1.1 Rule syntax reference

The current implementation of the control flow module reads its rules from a controlflow.properties
property file located in the GeoServer data directory.

603

http://gridlock.opengeo.org/geoserver/
http://gridlock.opengeo.org/geoserver/

GeoServer User Manual, Release 2.1-RC4

Total OWS request count

The global number of OWS requests executing in parallel can be specified with:

ows.global=<count>

Every request in excess will be queued and executed when other requests complete leaving some free
execution slot.

Per request control

A per request type control can be demanded using the following syntax:

ows.<service>[.<request>[.<outputFormat>]]=<count>

Where:

• <service> is the OWS service in question (at the time of writing can be wms, wfs, wcs)

• <request>, optional, is the request type. For example, for the wms service it can be GetMap,
GetFeatureInfo, DescribeLayer, GetLegendGraphics, GetCapabilities

• <outputFormat>, optional, is the output format of the request. For example, for the wms GetMap
request it could be image/png, image/gif and so on

A few examples:

don’t allow more than 16 WCS requests in parallel
ows.wcs=16
don’t allow more than 8 GetMap requests in parallel
ows.wms.getmap=8
don’t allow more than 2 WFS GetFeature requests with Excel output format
ows.wfs.getfeature.application/msexcel=2

Per user control

This avoid a single user to make too many requests in parallel:

user=<count>

Where <count> is the maximum number of parallel requests a single user can execute in parallel. The user
tracking mechanism is cookie based, so it will work fine for browsers but not as much for other kinds of
clients. An IP based mechanism is not provided at the time, but it would have its own fallacies as well, as
it would limit all the users sitting behind a single router to <count> requests (imagine the effect on a big
public administration).

Timeout

A request timeout is specified with the following syntax:

timeout=<seconds>

where <seconds> is the number of seconds a request can stay queued waiting for execution. If the request
does not enter execution before the timeout expires it will be rejected.

604 Chapter 18. Community

GeoServer User Manual, Release 2.1-RC4

18.1.2 A complete example

Assuming the server we want to protect has 4 cores a sample configuration could be:

if a request waits in queue for more than 60 seconds it’s not worth executing,
the client will likely have given up by then
timeout=60
don’t allow the execution of more than 100 requests total in parallel
ows.global=100
don’t allow more than 10 GetMap in parallel
ows.wms.getmap=10
don’t allow more than 4 outputs with Excel output as it’s memory bound
ows.wfs.getfeature.application/msexcel=4
don’t allow a single user to perform more than 6 requests in parallel
(6 being the Firefox default concurrency level at the time of writing)
user=6

18.2 GeoServer CSS Module

The css module for GeoServer adds an alternative style editor to GeoServer that uses a CSS-derived lan-
guage instead of SLD. These CSS styles are internally converted to SLD, which is then used as normal by
GeoServer. The CSS syntax is duplicated from SVG styling where appropriate, but extended to avoid los-
ing facilities provided by SLD when possible. As an example, it provides facilities for extracting feature
attributes to use in labelling, sizing point markers according to data values, etc.

Read on for information about:

18.2.1 Installing the GeoServer CSS Module

The CSS module is built nightly and published to the nightly build server. The installation process is similar
to other GeoServer plugins:

1. Download the file named like geoserver-2.0.2-SNAPSHOT-css-plugin.zip. Please verify
that the version number in the filename corresponds to the one reported in GeoServer’s admin UI.

2. Extract the contents of the ZIP archive into the /WEB-INF/lib/ direcotry in the
GeoServer webapp. For example, if you have installed the GeoServer binary
to /opt/geoserver-2.1.0/, you should place the CSS extension’s JAR files in
/opt/geoserver-2.1.0/webapps/geoserver/WEB-INF/lib/.

3. After extracting the extension, restart GeoServer in order for the changes to take effect. All further
configuration can be done through the GeoServer web UI.

After installation, you may find the following document useful in getting started styling layers with CSS:
Tutorial: Converting an SLD to CSS.

18.2.2 Tutorial: Converting an SLD to CSS

This tutorial will walk through installing the CSS plugin for GeoServer and using it to style the states data
that is included with GeoServer.

What you need before starting this tutorial:

• An installed copy of GeoServer 2.0 or greater. See Installation if you have not already installed
GeoServer.

18.2. GeoServer CSS Module 605

http://gridlock.opengeo.org/geoserver/2.1.x/community-latest/

GeoServer User Manual, Release 2.1-RC4

• The states layer from the default GeoServer configuration

• The CSS plugin installed. See Installing the GeoServer CSS Module if you have not already installed the
plugin.

What’s in the Box?

The CSS extension adds a page to the GeoServer web UI, linked from the sidebar. This page is only visible
to logged-in administrators since it can modify the styles in GeoServer.

Figure 18.1: The CSS demo page can be used to switch between layers and styles. Note the sidebar link, highlighted
in red.

After loading the CSS page, you can view any of the layers and styles in GeoServer by selecting them in the
drop-down boxes directly beneath the map, then clicking the Switch link. You can overwrite any style by
entering CSS into the form, but it is recommended that you avoid editing pre-existing styles since existing
SLD styles are not reflected in the CSS. The Create link allows creating a new style with a CSS file attached
to it.

Creating a States Style

The SLD file for the default states layer looks like this:

606 Chapter 18. Community

http://svn.codehaus.org/geoserver/trunk/data/release/data/shapefiles/

GeoServer User Manual, Release 2.1-RC4

<?xml version="1.0" encoding="ISO-8859-1"?>
<StyledLayerDescriptor

version="1.0.0"
xmlns="http://www.opengis.net/sld"
xmlns:ogc="http://www.opengis.net/ogc"
xmlns:xlink="http://www.w3.org/1999/xlink"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:gml="http://www.opengis.net/gml"
xsi:schemaLocation="http://www.opengis.net/sld
http://schemas.opengis.net/sld/1.0.0/StyledLayerDescriptor.xsd

">
<NamedLayer>
<Name>USA states population</Name>
<UserStyle>

<Name>population</Name>
<Title>Population in the United States</Title>
<Abstract>A sample filter that filters the United States into three

categories of population, drawn in different colors</Abstract>
<FeatureTypeStyle>

<Rule>
<Title>< 2M</Title>
<ogc:Filter>

<ogc:PropertyIsLessThan>
<ogc:PropertyName>PERSONS</ogc:PropertyName>
<ogc:Literal>2000000</ogc:Literal>

</ogc:PropertyIsLessThan>
</ogc:Filter>
<PolygonSymbolizer>

<Fill>
<!-- CssParameters allowed are fill (the color) and fill-opacity -->
<CssParameter name="fill">#4DFF4D</CssParameter>
<CssParameter name="fill-opacity">0.7</CssParameter>

</Fill>
</PolygonSymbolizer>

</Rule>
<Rule>
<Title>2M - 4M</Title>
<ogc:Filter>

<ogc:PropertyIsBetween>
<ogc:PropertyName>PERSONS</ogc:PropertyName>
<ogc:LowerBoundary>
<ogc:Literal>2000000</ogc:Literal>

</ogc:LowerBoundary>
<ogc:UpperBoundary>
<ogc:Literal>4000000</ogc:Literal>

</ogc:UpperBoundary>
</ogc:PropertyIsBetween>

</ogc:Filter>
<PolygonSymbolizer>

<Fill>
<!-- CssParameters allowed are fill (the color) and fill-opacity -->
<CssParameter name="fill">#FF4D4D</CssParameter>
<CssParameter name="fill-opacity">0.7</CssParameter>

</Fill>
</PolygonSymbolizer>

</Rule>
<Rule>
<Title>> 4M</Title>

18.2. GeoServer CSS Module 607

GeoServer User Manual, Release 2.1-RC4

<!-- like a linesymbolizer but with a fill too -->
<ogc:Filter>

<ogc:PropertyIsGreaterThan>
<ogc:PropertyName>PERSONS</ogc:PropertyName>
<ogc:Literal>4000000</ogc:Literal>

</ogc:PropertyIsGreaterThan>
</ogc:Filter>
<PolygonSymbolizer>

<Fill>
<!-- CssParameters allowed are fill (the color) and fill-opacity -->
<CssParameter name="fill">#4D4DFF</CssParameter>
<CssParameter name="fill-opacity">0.7</CssParameter>

</Fill>
</PolygonSymbolizer>

</Rule>
<Rule>
<Title>Boundary</Title>
<LineSymbolizer>

<Stroke>
<CssParameter name="stroke-width">0.2</CssParameter>

</Stroke>
</LineSymbolizer>
<TextSymbolizer>

<Label>
<ogc:PropertyName>STATE_ABBR</ogc:PropertyName>

</Label>

<CssParameter name="font-family">Times New Roman</CssParameter>
<CssParameter name="font-style">Normal</CssParameter>
<CssParameter name="font-size">14</CssParameter>

<LabelPlacement>
<PointPlacement>
<AnchorPoint>
<AnchorPointX>0.5</AnchorPointX>
<AnchorPointY>0.5</AnchorPointY>

</AnchorPoint>
</PointPlacement>

</LabelPlacement>
</TextSymbolizer>

</Rule>
</FeatureTypeStyle>

</UserStyle>
</NamedLayer>

</StyledLayerDescriptor>

Now, let’s start on a CSS file that accomplishes the same thing. First, use the Create link to start a new style.

This creates an example style with the following source:

* {
fill: lightgrey;
stroke: black;
mark: symbol(square);

}

This demonstrates the basic elements of a CSS style:

608 Chapter 18. Community

GeoServer User Manual, Release 2.1-RC4

A selector that identifies some part of the data to style. Here, the selector is *, indicating that all data should
use the style properties.

Properties inside curly braces ({}) which specify how the affected features should be styled. Properties
consist of name/value pairs separated by colons (:).

We can also see the basics for styling a polygon (fill), line (stroke), or point marker (mark). Note that
while the stroke and fill use colors, the marker simply identifies a Well-Known Mark with the symbol
function.

See Also:

The filters and properties pages in this manual provide more information about the options available
in CSS styles.

Let’s use these basics to start translating the states style. The first Rule in the SLD applies to states where
the PERSONS field is less than two million:

<Rule>
<Title>< 2M</Title>
<ogc:Filter>
<ogc:PropertyIsLessThan>
<ogc:PropertyName>PERSONS</ogc:PropertyName>
<ogc:Literal>2000000</ogc:Literal>

</ogc:PropertyIsLessThan>
</ogc:Filter>
<PolygonSymbolizer>

<Fill>
<!-- CssParameters allowed are fill (the color) and fill-opacity -->
<CssParameter name="fill">#4DFF4D</CssParameter>
<CssParameter name="fill-opacity">0.7</CssParameter>

</Fill>
</PolygonSymbolizer>

</Rule>

Using a CQL-based selector, and copying the names and values of the CssParameters over, we get:

[PERSONS < 2000000] {
fill: #4DFF4D;
fill-opacity: 0.7;

}

For the second style, we have a PropertyIsBetween filter, which doesn’t directly translate to CSS:

<Rule>
<Title>2M - 4M</Title>
<ogc:Filter>
<ogc:PropertyIsBetween>

<ogc:PropertyName>PERSONS</ogc:PropertyName>
<ogc:LowerBoundary>

<ogc:Literal>2000000</ogc:Literal>
</ogc:LowerBoundary>
<ogc:UpperBoundary>

<ogc:Literal>4000000</ogc:Literal>
</ogc:UpperBoundary>

</ogc:PropertyIsBetween>
</ogc:Filter>
<PolygonSymbolizer>

<Fill>

18.2. GeoServer CSS Module 609

GeoServer User Manual, Release 2.1-RC4

<!-- CssParameters allowed are fill (the color) and fill-opacity -->
<CssParameter name="fill">#FF4D4D</CssParameter>
<CssParameter name="fill-opacity">0.7</CssParameter>

</Fill>
</PolygonSymbolizer>

</Rule>

However, PropertyIsBetween can easily be replaced by a combination of two comparison selectors.
In CSS, you can apply multiple selectors to a rule by simply placing them one after the other. Selectors
separated by only whitespace must ALL be satisfied for a style to apply. Multiple such groups can be
attached to a rule by separating them with commas (,). If a feature matches any of the comma-separated
groups for a rule then that style is applied. Thus, the CSS equivalent of the second rule is:

[PERSONS > 2000000] [PERSONS < 4000000] {
fill: #FF4D4D;
fill-opacity: 0.7;

}

The third rule can be handled in much the same manner as the first:

[PERSONS > 4000000] {
fill: #4D4DFF;
fill-opacity: 0.7;

}

The fourth and final rule is a bit different. It applies a label and outline to all the states:

<Rule>
<Title>Boundary</Title>
<LineSymbolizer>
<Stroke>

<CssParameter name="stroke-width">0.2</CssParameter>
</Stroke>

</LineSymbolizer>
<TextSymbolizer>
<Label>

<ogc:PropertyName>STATE_ABBR</ogc:PropertyName>
</Label>

<CssParameter name="font-family">Times New Roman</CssParameter>
<CssParameter name="font-style">Normal</CssParameter>
<CssParameter name="font-size">14</CssParameter>

<LabelPlacement>

<PointPlacement>
<AnchorPoint>
<AnchorPointX>0.5</AnchorPointX>
<AnchorPointY>0.5</AnchorPointY>

</AnchorPoint>
</PointPlacement>

</LabelPlacement>
</TextSymbolizer>

</Rule>

This introduces the idea of rendering an extracted value (STATE_ABBR) directly into the map, unlike all of
the rules thus far. For this, you can use a CQL expression wrapped in square braces ([]) as the value of a

610 Chapter 18. Community

GeoServer User Manual, Release 2.1-RC4

CSS property. It is also necessary to surround values containing whitespace, such as Times New Roman,
with single- or double-quotes (", ’). With these details in mind, let’s write the rule:

* {
stroke-width: 0.2;
label: [STATE_ABBR];
font-family: "Times New Roman";
font-style: normal;
font-size: 14;

}

Note: You may have noticed this snippet doesn’t include the LabelPlacement fields from the SLD. The CSS
module doesn’t yet support this option.

Putting it all together, you should now have a style that looks like:

[PERSONS < 2000000] {
fill: #4DFF4D;
fill-opacity: 0.7;

}

[PERSONS > 2000000] [PERSONS < 4000000] {
fill: #FF4D4D;
fill-opacity: 0.7;

}

[PERSONS > 4000000] {
fill: #4D4DFF;
fill-opacity: 0.7;

}

* {
stroke-width: 0.2;
label: [STATE_ABBR];
font-family: "Times New Roman";
font-style: normal;
font-size: 14;

}

Press the Submit button at the bottom of the CSS form to see your style applied to the states layer.

Surprise! The borders are missing. What happened? In the GeoServer CSS module, each type of symbolizer
has a “key” property which controls whether it is applied. Without these “key” properties, subordinate
properties are ignored. These “key” properties are:

• fill, which controls whether or not Polygon fills are applied. This specified the color or graphic to use
for the fill.

• stroke, which controls whether or not Line and Polygon outline strokes are applied. This specifies the
color (or graphic fill) of the stroke.

• mark, which controls whether or not point markers are drawn. This identifies a Well-Known Mark or
image URL to use.

• label, which controls whether or not to draw labels on the map. This identifies the text to use for
labeling the map, usually as a CQL expression.

• halo-radius, which controls whether or not to draw a halo around labels. This specifies how large
such halos should be.

18.2. GeoServer CSS Module 611

GeoServer User Manual, Release 2.1-RC4

See Also:

The properties page in this manual for information about the other properties.

Since we don’t specify a stroke color, no stroke is applied. Let’s add it, so that that last rule ends up
looking like:

* {
stroke: black;
stroke-width: 0.2;
label: [STATE_ABBR];
font-family: "Times New Roman";
font-style: normal;
font-size: 14;

}

Refining the Style

Removing Duplicated Properties

The style that we have right now is only 23 lines, a nice improvement over the 103 lines of XML that we
started with. However, we are still repeating the fill-opacity attribute everywhere. We can move it
into the * rule and have it applied everywhere. This works because the GeoServer CSS module emulates
cascading, the “C” part of “CSS”. While SLD uses a painter’s model where each rule is processed indepen-
dently, a cascading style allows you to provide general style properties and override only specific properties
for particular features. Anyway, this takes the style down to only 21 lines:

[PERSONS < 2000000] {
fill: #4DFF4D;

}

[PERSONS > 2000000] [PERSONS < 4000000] {
fill: #FF4D4D;

}

[PERSONS > 4000000] {
fill: #4D4DFF;

}

* {
fill-opacity: 0.7;
stroke-width: 0.2;
label: [STATE_ABBR];
font-family: "Times New Roman";
font-style: normal;
font-size: 14;

}

Scale-Dependent Styles

The labels for this style are nice, but at lower zoom levels they seem a little crowded. We can easily move
the labels to a rule that doesn’t activate until the scale denominator is below 2000000. We do want to keep
the stroke and fill-opacity at all zoom levels, so we can separate them from the label properties:

612 Chapter 18. Community

GeoServer User Manual, Release 2.1-RC4

* {
fill-opacity: 0.7;
stroke-width: 0.2;

}

[@scale < 20000000] {
label: [STATE_ABBR];
font-family: "Times New Roman";
font-style: normal;
font-size: 14;

}

Setting Titles for the Legend

So far, we haven’t set titles for any of the style rules. This doesn’t really cause any problems while viewing
maps, but GeoServer uses the title in auto-generating legend graphics. Without the titles, GeoServer falls
back on the names, which in the CSS module are generated from the filters for each rule. Titles are not
normally a part of CSS, so GeoServer looks for them in specially formatted comments before each rule. We
can add titles like so:

/* @title Population < 2M */
[PERSONS < 2000000] {

fill: #4DFF4D;
fill-opacity: 0.7;

}

/* @title 2M < Population < 4M */
[PERSONS > 2000000] [PERSONS < 4000000] {

fill: #FF4D4D;
fill-opacity: 0.7;

}

/* @title Population > 4M */
[PERSONS > 4000000] {

fill: #4D4DFF;
fill-opacity: 0.7;

}

/* @title Boundaries */

* {
stroke-width: 0.2;
label: [STATE_ABBR];
font-family: "Times New Roman";
font-style: normal;
font-size: 14;

}

Because of the way that CSS is translated to SLD, each SLD rule is a combination of several CSS rules. This
is handled by combining the titles with the word “with”. If the title is omitted for a rule, then it is simply
not included in the SLD output.

18.2. GeoServer CSS Module 613

GeoServer User Manual, Release 2.1-RC4

18.2.3 Filter Syntax

Filters limit the set of features affected by a rule’s properties. There are several types of simple filters, which
can be combined to provide more complex filters for rules.

Combining Filters

Combination is done in the usual CSS way. A rule with two filters separated by a comma affects any features
that match either filter, while a rule with two filters separated by only whitespace affects only features that
match both filters. Here’s an example using a basic attribute filter (described below):

/* Matches places where the lake is flooding */
[rainfall>12] [lakes>1] {

fill: black;
}

/* Matches wet places */
[rainfall>12], [lakes>1] {

fill: blue;
}

Filtering on Data Attributes

An attribute filter matches some attribute of the data (for example, a column in a database table). This is
probably the most common type of filter. An attribute filter takes the form of an attribute name and a data
value separated by some predicate operator (such as the less-than operator <).

Supported predicate operators include the following:

Op-
era-
tor

Meaning

= The property must be exactly equal to the specified value.
<> The property must not be exactly equal to the specified value.
> The property must be greater than (or alphabetically later than) the specified value.
>= The property must be greater than or equal to the specified value.
< The property must be less than (or alphabetically earlier than) the specified value.
<= The property must be less than or equal to the specified value.
LIKE The property must match the pattern described by the specified value. Patterns use _ to

indicate a single unspecified character and % to indicate an unknown number of unspecified
characters.

For example, to only render outlines for the states whose names start with letters in the first half of the
alphabet, the rule would look like:

[STATE_NAME<=’M’] {
stroke: black;

}

Note: The current implementation of property filters uses ECQL syntax, described on the GeoTools wiki.

614 Chapter 18. Community

http://docs.codehaus.org/display/GEOTDOC/14+CQL

GeoServer User Manual, Release 2.1-RC4

Filtering on Type

When dealing with data from multiple sources, it may be useful to provide rules that only affect one of
those sources. This is done very simply; just specify the name of the layer as a filter:

states {
stroke: black;

}

Filtering by ID

For layers that provide feature-level identifiers, you can style specific features simply by specifying the ID.
This is done by prefixing the ID with a hash sign (#):

#states.2 {
stroke: black;

}

Note: In CSS, the . character is not allowed in element ids; and the #states.foo selector matches the
element with id states only if it also has the class foo. Since this form of identifier comes up so frequently
in GeoServer layers, the CSS module deviates from standard CSS slightly in this regard. Future revisions
may use some form of munging to avoid this deviation.

Filtering by Rendering Context (Scale)

Often, there are aspects of a map that should change based on the context in which it is being viewed. For
example, a road map might omit residential roads when being viewed at the state level, but feature them
prominently at the neighborhood level. Details such as scale level are presented as pseudo-attributes; they
look like property filters, but the property names start with an @ symbol:

[roadtype=’Residential’][@scale>100000] {
stroke: black;

}

The context details that are provided are as follows:

Pseudo-
Attribute

Meaning

@scale The scale denominator for the current rendering. More explicitly, this is the ratio of
real-world distance to screen/rendered distance.

Note: While property filters (currently) use the more complex ECQL syntax, pseudo-attributes cannot use
complex expressions and MUST take the form of <PROPERTY><OPERATOR><LITERAL>.

Filtering Symbols

When using symbols to create graphics inline, you may want to apply some styling options to them. You
can specify style attributes for built-in symbols by using a few special selectors:

18.2. GeoServer CSS Module 615

GeoServer User Manual, Release 2.1-RC4

PseudoSe-
lector

Meaning

:mark specifies that a rule applies to symbols used as point markers
:stroke specifies that a rule applies to symbols used as stroke patterns
:fill specifies that a rule applies to symbols used as fill patterns
:symbol specifies that a rule applies to any symbol, regardless of which context it is used in
:nth-mark(n)specifies that a rule applies to the symbol used for the nth stacked point marker on a

feature.
:nth-stroke(n)specifies that a rule applies to the symbol used for the nth stacked stroke pattern on a

feature.
:nth-fill(n)specifies that a rule applies to the symbol used for the nth stacked fill pattern on a

feature.
:nth-symbol(n)specifies that a rule applies to the symbol used for the nth stacked symbol on a feature,

regardless of which context it is used in.

For more discussion on using these selectors, see Styled Marks in GeoServer CSS.

Not Filtering at All

Sometimes it is useful to have a rule that matches all features, for example, to provide some default styling
for your map (remember, by default nothing is rendered). This is accomplished using a single asterisk * in
place of the usual filter. This catch-all rule can be used in complex expressions, which may be useful if you
want a rule to provide defaults as well as overriding values for some features:

* {
stroke: black;

}

18.2.4 Providing Metadata

One feature that appears in SLD that has no analog in CSS is the ability to provide metadata for styles and
style rules. For example, this SLD embeds a title for its single rule:

<?xml version="1.0" encoding="ISO-8859-1"?>
<StyledLayerDescriptor version="1.0.0"

xmlns="http://www.opengis.net/sld"
xmlns:ogc="http://www.opengis.net/ogc"
xmlns:xlink="http://www.w3.org/1999/xlink"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:gml="http://www.opengis.net/gml"
xsi:schemaLocation="http://www.opengis.net/sld

http://schemas.opengis.net/sld/1.0.0/StyledLayerDescriptor.xsd"
>

<NamedLayer>
<Name>Country Borders</Name>
<UserStyle>

<Name>borders</Name>
<Title>Country Borders</Title>
<Abstract>

Borders of countries, in an appropriately sovereign aesthetic.
</Abstract>
<FeatureTypeStyle>

<Rule>
<Title>Borders</Title>

616 Chapter 18. Community

GeoServer User Manual, Release 2.1-RC4

<LineSymbolizer>
<Stroke>
<CssParameter name="stroke-width">0.2</CssParameter>

</Stroke>
</LineSymbolizer>

</Rule>
</FeatureTypeStyle>

</UserStyle>
</NamedLayer>

</StyledLayerDescriptor>

Software such as GeoServer can use this metadata to automatically generate nice legend images directly
from the style. You don’t have to give up this ability when styling maps in CSS; just add comment before
your rules including lines that start with ‘@title‘ and ‘@abstract‘. Here is the analogous style in CSS:

/*
* @title This is a point layer.

* @abstract This is an abstract point layer.

*/

* {
mark: mark(circle);

}

Rules can provide either a title, an abstract, both, or neither. The SLD Name for a rule is autogenerated
based on the filters from the CSS rules that combined to form it, for aid in troubleshooting.

Combined Rules

One thing to keep in mind when dealing with CSS styles is that multiple rules may apply to the same
subset of map features, especially as styles get more complicated. Metadata is inherited similarly to CSS
properties, but metadata fields are combined instead of overriding less specific rules. That means that
when you have a style like this:

/* @title Borders */

* {
stroke: black;

}

/* @title Parcels */
[category=’parcel’] {

fill: blue;
}

The legend entry for parcels will have the title ’Parcels with Borders’. If you don’t like this behavior,
then only provide titles for the most specific rules in your style. (Or, suggest something better in an issue
report!) Rules that don’t provide titles are simply omitted from title aggregation.

18.2.5 Multi-Valued Properties

When rendering maps, it is sometimes useful to draw the same feature multiple times. For example, you
might want to stroke a roads layer with a thick line and then a slimmer line of a different color to create a
halo effect.

18.2. GeoServer CSS Module 617

mailto:'@title
mailto:'@abstract

GeoServer User Manual, Release 2.1-RC4

In GeoServer’s css module, all properties may have multiple values. There is a distinction between com-
plex properties, and multi-valued properties. Complex properties are separated by spaces, while multi-
valued properties are separated by commas. So, this style fills a polygon once:

* {
fill: url("path/to/img.png") red;

}

Using red as a fallback color if the image cannot be loaded. If you wanted to draw red on top of the image,
you would have to style like so:

* {
fill: url("path/to/img.png"), red;
/* set a transparency for the second fill,

leave the first fully opaque. */
fill-opacity: 100%, 20%;

}

For each type of symbolizer (fill, mark, stroke, and label) the number of values determines the num-
ber of times the feature will be drawn. For example, you could create a bulls-eye effect by drawing multiple
circles on top of each other with decreasing sizes:

* {
mark: mark(circle), mark(circle), mark(circle), mark(circle);
mark-size: 40px, 30px, 20px, 10px;

}

If you do not provide the same number of values for an auxiliary property, the list will be repeated as many
times as needed to finish. So:

* {
mark: mark(circle), mark(circle), mark(circle), mark(circle);
mark-size: 40px, 30px, 20px, 10px;
mark-opacity: 12%;

}

makes all those circles 12% opaque. (Note that they are all drawn on top of each other, so the center one
will appear 4 times as solid as the outermost one.)

Inheritance

For purposes of inheritance/cascading, property lists are treated as indivisible units. For example:

* {
stroke: red, green, blue;
stroke-width: 10px, 6px, 2px;

}

[type=’special’] {
stroke: pink;

}

This style will draw the ‘special’ features with only one outline. It has stroke-width: 10px, 6px,
2px; so that outline will be 10px wide.

618 Chapter 18. Community

GeoServer User Manual, Release 2.1-RC4

18.2.6 Property Listing

This page lists the supported rendering properties. See values for more information about the value types
for each.

Point Symbology

Property Type Meaning Accepts
Expression?

mark url,symbolThe image or well-known shape to render for points yes
mark-geometryex-

pres-
sion

An expression to use for the geometry when rendering features yes

mark-size length The width to assume for the provided image. The height will be
adjusted to preserve the source aspect ratio.

yes

mark-rotationangle A rotation to be applied (clockwise) to the mark image. yes

Line Symbology

Property Type Meaning Accepts
Expres-
sion?

stroke color, url,
symbol

The color, graphic, or well-known shape to use to stroke lines or
outlines

yes

stroke-geometryexpression An expression to use for the geometry when rendering features. yes
stroke-mimestring The mime-type of the external graphic provided. This is

required when using external graphics
yes

stroke-opacitypercentage A value in the range of 0 (fully transparent) to 1.0 (fully opaque) yes
stroke-widthlength The width to use for stroking the line. yes
stroke-sizelength An image or symbol used for the stroke pattern will be

stretched or squashed to this size before rendering. If this value
differs from the stroke-width, the graphic will be repeated or
clipped as needed.

yes

stroke-rotationangle A rotation to be applied (clockwise) to the stroke image. See
also the stroke-repeat property.

yes

stroke-linecapkeyword:
butt,
square,
round

The style to apply to the ends of lines drawn yes

stroke-linejoinkeyword:
miter,
round,
bevel

The style to apply to the “elbows” where segments of multi-line
features meet.

yes

stroke-dasharraylist of
lengths

The lengths of segments to use in a dashed line. no

stroke-dashoffsetlength How far to offset the dash pattern from the ends of the lines. yes|
stroke-repeatkeyword:

repeat,
stipple

How to use the provided graphic to paint the line. If repeat,
then the graphic is repeatedly painted along the length of the
line (rotated appropriately to match the line’s direction). If
stipple, then the line is treated as a polygon to be filled.

yes

18.2. GeoServer CSS Module 619

GeoServer User Manual, Release 2.1-RC4

Polygon Symbology

Property Type Meaning Accepts
Expression?

fill color, url,
symbol

The color, graphic, or well-known shape to use to stroke
lines or outlines

yes

fill-geometryexpression An expression to use for the geometry when rendering
features.

yes

fill-mime string The mime-type of the external graphic provided. This is
required when using external graphics

yes

fill-opacitypercentage A value in the range of 0 (fully transparent) to 1.0 (fully
opaque)

yes

fill-size length The width to assume for the image or graphic provided. yes
fill-rotationangle A rotation to be applied (clockwise) to the fill image. yes

620 Chapter 18. Community

GeoServer User Manual, Release 2.1-RC4

18.2. GeoServer CSS Module 621

GeoServer User Manual, Release 2.1-RC4

Text Symbology (Labeling)

Property Type Meaning Accepts
Expres-
sion?

label string The text to display as labels for features yes
label-geometryexpression An expression to use for the geometry when rendering

features.
yes

font-family string The name of the font or font family to use for labels yes
font-fill fill The fill to use when rendering fonts yes
font-style keyword:

normal,
italic,
oblique

The style for the lettering yes

font-weight keyword:
normal,
bold

The weight for the lettering yes

font-size length The size for the font to display. yes
halo-radius length The size of a halo to display around the lettering (to

enhance readability). This is required to activate the halo
feature.

yes

halo-color color The color for the halo yes
halo-opacity percentage The opacity of the halo, from 0 (fully transparent) to 1.0

(fully opaque).
yes

-gt-label-paddinglength The amount of ‘padding’ space to provide around labels.
Labels will not be rendered closer together than this
threshold. This is equivalent to the spaceAround vendor
parameter.

no

-gt-label-groupone of:
true or
false

If true, the render will treat features with the same label
text as a single feature for the purpose of labeling. This is
equivalent to the group vendor parameter.

no

-gt-label-max-displacementlength If set, this is the maximum displacement that the renderer
will apply to a label. Labels that need larger displacements
to avoid collisions will simply be omitted. This is
equivalent to the maxDisplacement vendor parameter.

no

-gt-label-min-group-distancelength This is equivalent to the minGroupDistance vendor
parameter in SLD.

no

-gt-label-repeatlength If set, the renderer will repeat labels at this interval along a
line. This is equivalent to the repeat vendor parameter.

no

-gt-label-all-groupone of true
or false

when using grouping, whether to label only the longest
line that could be built by merging the lines forming the
group, or also the other ones. This is equivalent to the
allGroup vendor parameter.

no

-gt-label-remove-overlapsone of true
or false

If enabled, the renderer will remove overlapping lines
within a group to avoid duplicate labels. This is equivalent
to the removeOverlaps vendor parameter.

no

-gt-label-allow-overrunsone of true
or false

Determines whether the renderer will show labels that are
longer than the lines being labelled. This is equivalent to
the allowOverrun vendor parameter.

no

-gt-label-follow-lineone of true
or false

If enabled, the render will curve labels to follow the lines
being labelled. This is equivalent to the followLine vendor
parameter.

no

-gt-label-max-angle-deltaone of true
or false

The maximum amount of curve allowed between two
characters of a label; only applies when ‘-gt-follow-line:
true’ is set. This is equivalent to the maxAngleDelta vendor
parameter.

no

-gt-label-auto-wraplength Labels will be wrapped to multiple lines if they exceed this
length in pixels. This is equivalent to the autoWrap vendor
parameter.

no

-gt-label-force-ltrone of true
or false

By default, the renderer will flip labels whose normal
orientation would cause them to be upside-down. Set this
parameter to false if you are using some icon character
label like an arrow to show a line’s direction. This is
equivalent to the forceLeftToRight vendor parameter.

no

-gt-label-conflict-resolutionone of true
or false

Set this to false to disable label conflict resolution, allowing
overlapping labels to be rendered. This is equivalent to the
conflictResolution vendor parameter.

no

-gt-label-fit-goodnessscale The renderer will omit labels that fall below this “match
quality” score. The scoring rules differ for each geometry
type. This is equivalent to the goodnessOfFit vendor
parameter.

no

-gt-label-priorityexpression This option specifies an expression to use in determining
which features to prefer if there are labeling conflicts. This
is equivalent to the Priority SLD extension.

yes

622 Chapter 18. Community

GeoServer User Manual, Release 2.1-RC4

Shared

Prop-
erty

Type Meaning Accepts
Expres-
sion?

geometryex-
pres-
sion

An expression to use for the geometry when rendering features. This
provides a geometry for all types of symbology, but can be overridden by
the symbol-specific geometry properties.

yes

Symbol Properties

These properties are applied only when styling built-in symbols. See Styled Marks in GeoServer CSS for
details.

Property Type Meaning Accepts Expression?
size length The size at which to render the symbol. yes
rotation angle An angle through which to rotate the symbol. yes

18.2.7 CSS Value Types

This page presents a brief overview of CSS types as used by this project. Note that these can be repeated as
described in multivalues.

Numbers

Numeric values consist of a number, or a number annotated with a measurement value. In general, it is
wise to use measurement annotations most of the time, to avoid ambiguity and protect against potential
future changes to the default units.

Currently, the supported units include:

• Length

– px pixels

– m meters

– ft feet

• Angle

– deg degrees

• Ratio

– % percentage

When using expressions in place of numeric values, the first unit listed for the type of measure is assumed.

Since the CSS module translates styles to SLD before any rendering occurs, its model of unit-of-measure is
tied to that of SLD. In practice, this means that for any particular symbolizer, there only one unit-of-measure
applied for the style. Therefore, the CSS module extracts that unit-of-measure from one special property
for each symbolizer type. Those types are listed below for reference:

• fill-size determines the unit-of-measure for polygon symbolizers (but that doesn’t matter so
much since it is the only measure associated with fills)

• stroke-width determines the unit-of-measure for line symbolizers

18.2. GeoServer CSS Module 623

GeoServer User Manual, Release 2.1-RC4

• mark-size determines the unit-of-measure for point symbolizers

• font-size determines the unit-of-measure for text symbolizers and the associated halos

Strings

String values consist of a small snippet of text. For example, a string could be a literal label to use for a
subset of roads:

[lanes>20] {
label: "Serious Freaking Highway";

}

Strings can be enclosed in either single or double quotes. It’s easiest to simply use whichever type of quotes
are not in your string value, but you can escape quote characters by prefixing them with a backslash \.
Backslash characters themselves must also be prefixed. For example, ’\\\” is a string value consisting of
a single backslash followed by a single single quote character.

Colors

Color values are relatively important to styling, so there are multiple ways to specify them.

Format Interpretation
#RRGGBB A hexadecimal-encoded color value, with two digits each for red, green, and blue.
#RGB A hexadecimal-encoded color value, with one digits each for red, green, and blue. This is

equivalent to the two-digit-per-channel encoding with each digit duplicated.
rgb(r,
g, b)

A three-part color value with each channel represented by a value in the range 0 to 1, or in
the range 0 to 255. 0 to 1 is used if any of the values include a decimal point, otherwise it is
0 to 255.

Simple
name

The simple English name of the color. A full list of the supported colors is available at
http://www.w3.org/TR/SVG/types.html#ColorKeywords

External References

When using external images to decorate map features, it is necessary to reference them by URL. This is
done by a call to the url function. The URL value may be wrapped in single or double-quotes, or not at all.
The same escaping rules as for string values. The url function is also a special case where the surrounding
quote marks can usually be omitted. Some examples:

/* These properties are all equivalent. */

* {
stroke: url("http://example.com/");
stroke: url(’http://example.com/’);
stroke: url(http://example.com/);

}

Well-Known Marks

As defined in the SLD standard, GeoServer’s css module also allows using a certain set of well-known
mark types without having to provide graphic resources explicitly. These include:

• circle

624 Chapter 18. Community

http://www.w3.org/TR/SVG/types.html#ColorKeywords

GeoServer User Manual, Release 2.1-RC4

• square

• cross

• star

• arrow

And others. Additionally, vendors can provide an extended set of well-known marks, a facet of the standard
that is exploited by some GeoTools plugins to provide dynamic map features such as using characters from
TrueType fonts as map symbols, or dynamic charting. In support of these extended mark names, the css
module provides a symbol function similar to url. The syntax is the same, aside from the function name:

* {
mark: symbol(circle);
mark: symbol(’ttf://Times+New+Roman&char=0x19b2’);
mark: symbol("chart://type=pie&x&y&z");

}

18.2.8 Styled Marks in GeoServer CSS

GeoServer’s CSS module provides a collection of predefined symbols that you can use and combine to
create simple marks, strokes, and fill patterns without needing an image editing program. You can access
these symbols via the symbol() CSS function. For example, the built-in circle symbol makes it easy to create
a simple ‘dot’ marker for a point layer:

* {
mark: symbol(circle);

}

Symbols work anywhere you can use a url() to reference an image (ie, you can use symbols for stroke
and fill patterns as well as markers.)

Symbol Names

GeoServer extensions can add extra symbols (such as the chart:// symbol family which allows the use
of charts as symbols via a naming scheme similar to the Google Charts API). However, there are a few
symbols that are always available:

• circle

• square

• triangle

• arrow

• cross

• star

• x

• shape://horizline

• shape://vertline

• shape://backslash

• shape://slash

18.2. GeoServer CSS Module 625

GeoServer User Manual, Release 2.1-RC4

• shape://plus

• shape://times

Symbol Selectors

Symbols offer some additional styling options beyond those offered for image references. To specify these
style properties, just add another rule with a special selector. There are 8 “pseudoclass” selectors that are
used to style selectors:

• :mark specifies that a rule applies to symbols used as point markers

• :stroke specifies that a rule applies to symbols used as stroke patterns

• :fill specifies that a rule applies to symbols used as fill patterns

• :symbol specifies that a rule applies to any symbol, regardless of which context it is used in

• :nth-mark(n) specifies that a rule applies to the symbol used for the nth stacked point marker on a
feature.

• :nth-stroke(n) specifies that a rule applies to the symbol used for the nth stacked stroke pattern
on a feature.

• :nth-fill(n) specifies that a rule applies to the symbol used for the nth stacked fill pattern on a
feature.

• :nth-symbol(n) specifies that a rule applies to the symbol used for the nth stacked symbol on a
feature, regardless of which context it is used in.

Symbol Styling Properties

Styling a built-in symbol is similar to styling a polygon feature. However, the styling options are slightly
different from those available to a true polygon feature:

• The mark and label families of properties are unavailable for symbols.

• Nested symbol styling is not currently supported.

• Only the first stroke and fill will be used.

• Additional size (as a length) and rotation (as an angle) properties are available. These are analo-
gous to the (mark|stroke|fill)-size and (mark|stroke|fill)-rotation properties avail-
able for true geometry styling.

Note: The various prefixed ‘-size’ and ‘-rotation’ properties on the containing style override those for the
symbol if they are present.

Example Styled Symbol

As an example, consider a situation where you are styling a layer that includes data about hospitals in
your town. You can create a simple hospital logo by placing a red cross symbol on top of a white circle
background:

[usage=’hospital’] {
mark: symbol(’circle’), symbol(’cross’);

}

[usage=’hospital’] :nth-mark(1) {

626 Chapter 18. Community

GeoServer User Manual, Release 2.1-RC4

size: 16px;
fill: white;
stroke: red;

}

[usage=’hospital’] :nth-mark(2) {
size: 12px;
fill: red;

}

18.3 DDS/BIL(World Wind Data Formats) Extension

This output module allows GeoServer to output imagery and terrain in formats understood by NASA
World Wind. The mime-types supported are:

1. Direct Draw Surface (DDS) - image/dds

2. Binary Interleaved by Line(BIL) - image/bil

18.3.1 Installing the DDS/BIL extension

1. Download the DDS/BIL extension from the nightly GeoServer community module builds.

Warning: Make sure to match the version of the extension to the version of the
GeoServer instance!

2. Extract the contents of the archive into the WEB-INF/lib directory of the GeoServer installation.

18.3.2 Checking if the extension is enabled

Once the extension is installed, the provided mime-types should appear in the layer preview dropbox as
shown:

18.3.3 Configuring World Wind to access Imagery/Terrain from GeoServer

Please refer to the WorldWind Forums for instructions on how to setup World Wind to work with layers
published via GeoServer.

18.3. DDS/BIL(World Wind Data Formats) Extension 627

http://worldwind.arc.nasa.gov/java/
http://worldwind.arc.nasa.gov/java/
http://gridlock.opengeo.org/geoserver/trunk/community-latest/
http://forum.worldwindcentral.com/index.php

GeoServer User Manual, Release 2.1-RC4

18.4 Monitoring

The monitoring extension provides a request monitor for GeoServer. It captures information about each
request a GeoServer instance handles and produces reports based on the request data.

18.4.1 Installing the Monitoring Extension

Monitoring is a community extension, and thus is not found on the standard GeoServer release download
pages. Community extensions are only available via Nightly builds or by compiling from source.

1. Download the proper “monitoring” extension linked from the GeoServer nightly builds page.

Warning: Ensure the extension matching the version of the GeoServer installation is down-
loaded.

2. Extract the contents of the archive into the WEB-INF/lib directory of the GeoServer installation.

Verifying the Installation

There are two ways to verify that the monitoring extension has been properly installed.

• Start GeoServer and open the Web Administration Interface. Log in using the administration account.
If successfully installed, there will be a Monitor section on the left column of the home page.

Figure 18.2: Monitoring section in the web admin interface

• Start GeoServer and navigate to the current GeoServer Data Directory. If successfully installed, a new
directory named monitoring will be created in the data directory.

18.4.2 Monitoring Overview

The following diagram outlines the architecture of the monitoring extension:

As a request is processed the monitor inserts itself at particular points in the request life cycle to capture
necessary data. That data is persisted to an external database:

ID | STATUS | PATH | START_TIME | ...
--
1 | FINISHED | /wms | 2008-25-10 08:21 | ...
2 | FAILED | /wfs | 2008-25-10 08:22 | ...
3 | RUNNING | /wcs | 2008-25-10 08:25 | ...

628 Chapter 18. Community

http://geoserver.org/display/GEOS/Nightly
http://geoserver.org/display/GEOS/Nightly

GeoServer User Manual, Release 2.1-RC4

Figure 18.3: Monitor extension architecture

18.4. Monitoring 629

GeoServer User Manual, Release 2.1-RC4

The request data is made available through various reports:

Figure 18.4: Request report

18.4.3 Monitor Configuration

Many aspects of the monitor extension are configurable. All configuration files are stored in the data direc-
tory under the monitoring directory:

<data_directory>
monitoring/

db.properties
filter.properties
hibernate.properties
monitor.properties

The function of these files will be discussed below.

630 Chapter 18. Community

GeoServer User Manual, Release 2.1-RC4

Monitor Mode

The monitoring extension supports different “monitoring modes” that control how request data is captured
and stored. Currently three modes are supported:

• history (Default) - Only historical request information is available. No live information is maintained.

• live - Only information about live requests is maintained.

• mixed - A combination of live and history. This mode is experimental.

The mode is set in the monitor.properties file.

History Mode

History mode persists information about all requests in an external database. It does not provide any real
time information. This mode is appropriate in cases where a user is most interested in analyzing request
history over a given time period.

Live Mode

Live mode only maintains short lived information about requests that are currently executing. It also main-
tains a small buffer of recent requests. No external database is used with this mode and no information is
persisted for the long term.

This mode is most appropriate in cases where a user only cares about what a server is doing in real time
and is not interested about request history.

Mixed Mode

Mixed mode combines both live and history mode in that it maintains both real time information and
persists all request data to the monitoring database. This mode however is experimental and comes with
more overhead than the other two modes. This is because mixed mode must perform numerous database
transactions over the life cycle of a single request (in order to maintain live information), whereas history
mode only has to perform a single database transaction for a request.

This mode is most appropriate when both real time request information and request history are desired.
This mode is also most appropriate in a clustered server environment in which a user is interested in view-
ing real time request information about multiple nodes in a cluster.

Monitor Database

By default monitored request data is stored in an embedded H2 database located in the monitoring di-
rectory. This can be changed by editing the db.properties file:

default configuration is for h2
driver=org.h2.Driver
url=jdbc:h2:file:${GEOSERVER_DATA_DIR}/monitoring/monitoring

For example to store request data in an external PostgreSQL database:

18.4. Monitoring 631

GeoServer User Manual, Release 2.1-RC4

driver=org.postgresql.Driver
url=jdbc:postgresql://192.168.1.124:5432/monitoring
username=bob
password=foobar

Request Filters

By default not all requests are monitored. Those requests excluded include any web admin requests or any
Monitor HTTP API requests. These exclusions are configured in the filter.properties file:

/rest/monitor/**
/web/**

These default filters can be changed or extended to filter more types of requests. For example to filter out
all WFS requests:

/wfs

How to determine the filter path

The contents of filter.properties are a series of ant-style patterns that are applied to the path of the
request. Consider the following request:

http://localhost:8080/geoserver/wms?request=getcapabilities

The path of the above request is /wms. In the following request:

http://localhost:8080/geoserver/rest/workspaces/topp/datastores.xml

The path is /rest/workspaces/topp/datastores.xml.

In general, the path used in filters is comprised of the portion of the URL after /geoserver (including the
preceding /) and before the query string ?:

http://<host>:<port>/geoserver/<path>?<queryString>

Note: For more information about ant-style pattern matching, see the Apache Ant manual.

18.4.4 Monitor HTTP API

The monitor extension provides an API for retrieving request information via a simple set of HTTP calls.

The most simple of all calls would be to retrieve information about all requests:

GET http://localhost:8080/geoserver/rest/monitor/requests.html

This would return an HTML document containing information about all requests. The general structure of
a query for a set of requests is:

GET http://<host>:<port>/geoserver/rest/monitor/requests.<format>

Where format is the representation of the returned result and is one of:

632 Chapter 18. Community

http://ant.apache.org/manual/dirtasks.html

GeoServer User Manual, Release 2.1-RC4

• html - Representation as an HTML table.

• csv - Representation as a Comma Separated Value table.

A query for a single request has the structure:

GET http://<host>:<port>/geoserver/rest/monitor/requests/<id>.<format>

Where id is the numeric identifier of a single request and format is as described above.

Note: An alternative to specifying the returned representation with the format extension is to use the
http Accept header and specify one of the MIME types:

• text/html

• application/csv

See the HTTP specification for more information about the Accept header.

API Reference

There are numerous parameters available that can be used to filter what request information is returned
and how it is structured. This section contains a comprehensive list of all parameters. See the examples
section for a set of examples of applying these parameters.

count

Specifies how many records should be returned.

Syntax Example
count=<integer> requests.html?count=100

offset

Specifies where in the result set records should be returned from.

Syntax Example
offset=<integer> requests.html?count=100&offset=500

live

Specifies that only live (currently executing) requests be returned.

Syntax Example
live=<yes|no|true|false> requests.html?live=yes

This parameter relies on a Monitor Mode being used that maintains real time request information (either live
or mixed).

18.4. Monitoring 633

http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html

GeoServer User Manual, Release 2.1-RC4

from

Specifies an inclusive lower bound on the timestamp for the start of a request.

Syntax Example
from=<timestamp> requests.html?from=2010-07-23T16:16:44

to

Specifies an inclusive upper bound on the timestamp for the start of a request.

Syntax Example
to=<timestamp> requests.html?to=2010-07-24T00:00:00

order

Specifies which attribute of a request to sort by.

Syntax Example
order=<attribute>[;<ASC|DESC>] requests.html?order=path

requests.html?order=startTime:DESC
requests.html?order=totalTime:ASC

Examples

All requests as HTML

GET http://localhost:8080/geoserver/rest/monitor/requests.html

All requests as CSV

GET http://localhost:8080/geoserver/rest/monitor/requests.csv

Requests over a time period

GET http://localhost:8080/geoserver/rest/monitor/requests.html?from=2010-06-20&to2010-07-20

Requests paged over multiple queries

GET http://localhost:8080/geoserver/rest/monitor/requests.html?count=100
GET http://localhost:8080/geoserver/rest/monitor/requests.html?count=100&offset=100
GET http://localhost:8080/geoserver/rest/monitor/requests.html?count=100&offset=200
GET http://localhost:8080/geoserver/rest/monitor/requests.html?count=100&offset=300

634 Chapter 18. Community

GeoServer User Manual, Release 2.1-RC4

18.5 GeoServer Printing Module

The printing module for GeoServer allows easy hosting of the Mapfish printing service within a
GeoServer instance. The Mapfish printing module provides an HTTP API for printing that is useful within
JavaScript mapping applications. User interface components for interacting with the print service are avail-
able from the Mapfish and GeoExt projects.

18.5.1 Installation

The printing module is built nightly and published to the nightly build server. The installation process is
similar to other GeoServer plugins:

• Download the file (named like geoserver-2.0.2-SNAPSHOT-printing-plugin.zip)

• Extract the contents of the ZIP archive into the /WEB-INF/lib/ in the GeoServer webapp. For exam-
ple, if you have installed the GeoServer binary to /opt/geoserver-2.0.1/, the printing extension
JAR files should be placed in /opt/geoserver-2.0.1/webapps/geoserver/WEB-INF/lib/.

• After extracting the extension, restart GeoServer in order for the changes to take effect. All further
configuration can be done with GeoServer running.

18.5.2 Verifying Installation

On the first startup after installation, GeoServer should create a print module configuration file in
GEOSERVER_DATA_DIR/printing/config.yaml. Checking for this file’s existence is a quick way to
verify the module is installed properly. It is safe to edit this file; in fact there is currently no way to modify
the print module settings other than by opening this configuration file in a text editor. Details about the
configuration file are available from the Mapfish website <http://www.mapfish.org/doc/print/>.

If the module is installed and configured properly, then you will also be able to retrieve a list of configured
printing parameters from http://localhost:8080/geoserver/pdf/info.json . This service must be working
properly for JavaScript clients to use the printing service.

Finally, you can test printing in this sample page. You can load it directly to attempt to produce a map from
a GeoServer running at http://localhost:8080/geoserver/. If you are running at a different host and port,
you can download the file and modify it with your HTML editor of choice to use the proper URL.

Warning: This sample script points at the development version of GeoExt. You can modify it for
production use, but if you are going to do so you should also host your own, minified build of GeoExt
and OpenLayers. The libraries used in the sample are subject to change without notice, so pages using
them may change behavior without warning.

18.5.3 Using the Print Module in Applications

See the print documentation on the GeoExt web site for information about using the print service in web
applications.

18.6 Python

The Python extension allows users to extend GeoServer dynamically by writing Python scripts via jython,
the Java implementation of Python.

18.5. GeoServer Printing Module 635

http://gridlock.opengeo.org/geoserver/2.1.x/community-latest/
http://localhost:8080/geoserver/pdf/info.json
http://localhost:8080/geoserver/
http://geoext.org/search.html?q=print
http://jython.org

GeoServer User Manual, Release 2.1-RC4

18.6.1 Installing the Python Extension

1. Download the Python extension from the GeoServer download page.

Warning: Ensure the extension matching the version of the GeoServer installation is down-
loaded.

2. Extract the contents of the archive into the WEB-INF/lib directory of the GeoServer installation.

Verifiying the Installation

To verify the extension has been installed properly start the GeoServer instance and navigate to the data directory. Upon a successfull install a new directory
named python will be created.

18.6.2 Python Extension Overview

The python extension provides a number of scripting hooks throughout GeoServer. These scripting hooks
correspond to GeoServer “extension points”. An extension point in GeoServer is a class or interface that is
designed to be implemented and dynamically loaded to provide a specific function. The classic example is
a WMS or WFS output format, but GeoServer contains many extension points.

Figure 18.5: Python scripting extension hooks

636 Chapter 18. Community

http://geoserver.org/display/GEOS/Download

GeoServer User Manual, Release 2.1-RC4

Implementing a GeoServer extension point in python involves writing scripts and placing them in the
appropriate directory under the GeoServer data directory. When the python extension is installed it creates
the following directory structure:

GEOSERVER_DATA_DIR/
...
python/

app/
datastore/
filter/
format/
lib/
process/

Each directory correponds to a GeoServer extension point.

The app directory consists of python scripts that are intended to be invoked over http through a wsgi
interface.

The datastore directory consists of python modules that implement the geotools data store interface.
The geotools data store interface is the extension point used to contribute support for vector spatial data
formats from shapefiles to postgis.

The filter directory consists of modules that implement filter functions. Filter functions are used in WFS
queries and in SLD documents.

The format directory consists of modules that implement the various output format extension points in
GeoServer. This includes WMS GetMap, GetFeatureInfo and WFS GetFeature.

The lib directory contains common modules that can be used in implementing the other types of modules.
These types of modules are typically utility modules.

The process directory consists of modules that implement the geotools process interface. Implements of
this extension point are used as processes in the GeoServer WPS.

Continue to Python Scripting Hooks for more details.

18.6.3 Python Scripting Hooks

app

The app hook provides a way to add scripts that are invoked via http. Scripts are provided with a WSGI
environment for execution. A simple hello world example looks like this:

def app(environ, start_response):
start_response(’200 OK’, [(’Content-type’,’text/plain’)])
return ’Hello world!’

The script must define a function named app that takes an environ which is a dict instance that contains
information about the current request, and the executing environment. The start_response method starts the
response and takes a status code and a set of response headers.

The app method returns an iterator that generates the response content, or just a single string representing
the entire body.

For more information about WSGI go to http://wsgi.org.

18.6. Python 637

http://wsgi.org/wsgi
http://wsgi.org

GeoServer User Manual, Release 2.1-RC4

datastore

TODO

filter

The filter hook provides filter function implementations to be used in an OGC filter. These filters appear in
WFS queries, and in SLD styling rules.

A simple filter function looks like this:

from geosever.filter import function
from geoscript.geom import Polygon

@function
def areaGreaterThan(feature, area):
return feature.geom.area > area

The above function returns true or false depending on if the area of a feature is greater than a certain
threshold.

format

The format hook provides output format implementations for various ows service operations. Examples
include png for WMS GetMap, geojson and gml for WFS GetFeature, html and plain text for WMS GetFea-
tureInfo.

Currently formats fall into two categories. The first are formats that can encode vector data (features). A
simple example looks like:

from geoserver.format import vector_format

@vector_format(’property’, ’text/plain’)
def write(data, out):
for feature in data.features:
out.write("%s=%s\n" % (f.id, ’|’.join([str(val) for val in f.values()])))

The above function encodes a set of features as a java property file. Given the following feature set:

Feature(id="fid.0", geometry="POINT(0 0)", name="zero")
Feature(id="fid.1", geometry="POINT(1 1)", name="one")
Feature(id="fid.2", geometry="POINT(1 1)", name="two")

The above function would output:

fid.0=POINT(0 0)|one
fid.1=POINT(1 1)|two
fid.2=POINT(2 2)|three

Vector formats can be invoked by the following service operations:

• WFS GetFeature (?outputFormat=property)

• WMS GetMap (?format=property)

• WMS GetFeatureInfo (?info_format=property)

638 Chapter 18. Community

GeoServer User Manual, Release 2.1-RC4

A vector format is a python function that is decorated by the vector_format decorator. The decorator
accepts two arguments. The first is the name of the output format. This is the identifier that clients use to
request the format. The second parameter is the mime type that describes the type of content the format
creates.

The second type of output format is one that encodes a complete map. This format can only be used with
the WMS GetMap operation.

TODO: example

process

The process hook provides process implementations that are invoked by the GeoServer WPS. A simple
example looks like:

from geoserver import process
from geoscript.geom import Geometry

@process(’Buffer’, ’Buffer a geometry’, args=[(’geom’, Geometry)],
result=(’The buffered result’, Geometry))

def buffer(geom):
return geom.buffer(10)

A process is a function that is decorated by the process decorator. The decorator takes the following
arguments:

title The title of the process to displayed to clients
description The description of the process.
version The version of the process
args The arguments the process accepts as a list of tuples
result The result of a process as a tuple

The args parameter is a list of tuples describing the input arguments of the process. Each tuple can contain
up to three values. The first value is the name of the parameter and is mandatory. The second value is the
type of the parameter and is optional. The third value is a description of the parameter and is optional.

The result parameter describes the result of the process and is a tuple containing up to two values. This
parameter is optional. The first value is the type of the result and the second value is a description of the
result.

18.7 SpatiaLite

Note: GeoServer does not come built-in with support for SpatiaLite; it must be installed through an ex-
tension. Furthermore it requires that additional native libraries be available on the system. Proceed to
Installing the SpatiaLite extension for installation details.

SpatiaLite is the spatial extension of the popular SQLite embedded relational database.

18.7.1 Installing the SpatiaLite extension

1. Download the SpatiaLite extension from the nightly GeoServer community module builds.

18.7. SpatiaLite 639

http://http://www.gaia-gis.it/spatialite/
http://www.sqlite.org
http://gridlock.opengeo.org/geoserver/trunk/community-latest/

GeoServer User Manual, Release 2.1-RC4

Warning: Make sure to match the version of the extension to the version of the GeoServer in-
stance!

2. Extract the contents of the archive into the WEB-INF/lib directory of the GeoServer installation.

18.7.2 Notes about shared libraries

The version of SpatiaLite included in the extension is compiled against the GEOS and PROJ libraries so
they must be installed on the system. If the libraries are not installed on the system the extension will cease
to function.

If the libraries are not installed on your system in a “default” location you must set the LD_LIBRARY_PATH
(or equivalent) environment variable in order to load them at runtime.

Note: On Windows systems it is easiest to place the GEOS and PROJ dll’s in the C:\WINDOWS\system32
directory.

18.7.3 Adding a SpatiaLite database

Once the extension is properly installed SpatiaLite will show up as an option when creating a new data
store.

Figure 18.6: SpatiaLite in the list of vector data sources

640 Chapter 18. Community

http://geos.osgeo.org

GeoServer User Manual, Release 2.1-RC4

Figure 18.7: Configuring a SpatiaLite data store

18.7. SpatiaLite 641

GeoServer User Manual, Release 2.1-RC4

18.7.4 Configuring a SpatiaLite data store

database The name of the database to connect to. See notes below.
schema The database schema to access tables from. Optional.
user The name of the user to connect to the database as. Optional.
password The password to use when connecting to the database. Optional, leave

blank for no password.
max connections
min connections

Connection pool configuration parameters. See the Database
Connection Pooling section for details.

The database parameter may be specified as an absolute path or a relative one. When specified as a rel-
ative path the database will created in the spatialite directory, located directly under the root of the
GeoServer data directory.

642 Chapter 18. Community

	Introduction
	Overview
	History
	Getting Involved
	License

	Installation
	OS-independent binary
	Web archive (WAR)
	Windows Installer
	Mac OS X Installer

	Getting Started
	Web Administration Interface Quickstart
	Adding a Shapefile
	Adding a PostGIS Table
	Styling a Map

	GeoServer Data Directory
	Creating a New Data Directory
	Setting the Data Directory
	Structure of the Data Directory
	Migrating a Data Directory between different versions

	Web Administration Interface
	Interface basics
	Server
	Services
	Data
	Demos
	Layer Preview

	Working with Data
	Shapefile
	PostGIS
	Directory of spatial files
	External Web Feature Server
	External Web Map Server
	Java Properties
	ArcGrid
	GeoTIFF
	GTOPO30
	ImageMosaic
	WorldImage
	ArcSDE
	GML
	DB2
	H2
	MySQL
	Pregeneralized Features
	Oracle
	Microsoft SQL Server
	VPF
	GDAL Image Formats
	ImagePyramid
	Image Mosaic JDBC
	Oracle Georaster
	Custom JDBC Access for image data
	Database Connection Pooling
	SQL views
	Application Schema Support

	Filtering in GeoServer
	GeoServer supported filter languages
	Filter functions
	Filter Function Reference

	Styling
	Introduction to SLD
	SLD Cookbook
	SLD Reference
	SLD Extensions in GeoServer
	SLD Tips and Tricks

	Services
	Web Feature Service
	Web Map Service
	Web Coverage Service
	Virtual OWS Services

	RESTful Configuration
	Overview of REST
	REST Configuration API Reference
	REST Configuration Examples

	Advanced GeoServer Configuration
	Coordinate Reference System Handling
	Advanced log configuration
	WMS Decorations

	Security
	Accessing secured resources
	Users and roles
	Service-level security
	Layer-level security
	REST Security
	Disabling security

	Running in a Production Environment
	Java Considerations
	Container Considerations
	Configuration Considerations
	Data Considerations
	Linux init scripts
	Other Considerations
	Troubleshooting

	Caching with GeoWebCache
	Using GeoWebCache
	GeoWebCache Configuration
	GeoWebCache Demo page
	Seeding and refreshing
	Troubleshooting

	Google Earth
	Overview
	Quickstart
	KML Styling
	Tutorials
	Features

	Extensions
	GeoSearch
	Imagemap
	OGR based WFS Output Format
	Cross layer filtering
	GeoExt Styler
	WFS Versioning
	Web Processing Service

	Tutorials
	Freemarker Templates
	GeoRSS
	GetFeatureInfo Templates
	Paletted Images
	Serving Static Files
	WMS Reflector
	CQL and ECQL
	Using the ImageMosaic plugin
	Building and using an image pyramid
	Storing a coverage in a JDBC database
	Using the GeoTools feature-pregeneralized module
	Setting up a JNDI connection pool with Tomcat

	Community
	Control flow module
	GeoServer CSS Module
	DDS/BIL(World Wind Data Formats) Extension
	Monitoring
	GeoServer Printing Module
	Python
	SpatiaLite

