Satellite image processing based on GreenLand application

Dorian Gorgan, Danut Mihon, Victor Bacu
Computer Science Department
Technical University of Cluj-Napoca
dorian.gorgan@cs.utcluj.ro
Presentation topics

- ICT topics:
 - Satellite image processing overview
 - Satellite image processing applications
 - GreenLand general description
 - System related architecture
 - Vegetation indexes
 - GreenLand GUI description
 - GreenLand user scenario
 - Conclusions
Satellite image processing overview

- Satellite image processing
 - Definition: act of examining images for the purpose of identifying objects and giving them a significance
 - Applicability: used in different Earth Science domains
 - Land cover
 - Air pollution
 - Hydrology
 - Ecology
 - etc
 - Analysis: detecting, identifying, classifying, measuring and evaluating the significance of physical and cultural objects, their patterns and spatial relationship
Satellite image processing overview

- Satellite image processing
 - Types: many types of satellite images used for different purposes
 - Landsat
 - MODIS
 - Aster
 - Quickbird, etc
 - Access: there are several places from where to view and download these satellite images.
 - Size: depending on the geographical region size and on the containing information, satellite images could reach a couple of Gb in size.
Satellite image processing applications

- **GreenLand application**
 - Vegetation index based classification (NDVI, EVI, IPVI, SAVI, GEMI)
 - Works with pre processed Landsat satellite images
 - Runs on GRID infrastructure
 - Jobs are fast executed due to high computation and storage capabilities offered by the Grid infrastructure
 - Based on ESIP (Environment Oriented Satellite Image Processing Platform)
 - Quick and easy access
 - http://cgis.utcluj.ro:4331/GreenLand1.3/
GreenLand vegetation indices

- The GreenLand classification process is performed based on vegetation indexes
 - NDVI (Normalized Vegetation Index)
 - EVI (Enhanced Vegetation Index)
 - IPVI (Infrared Percentage Vegetation Index)
 - GEMI (Global Environment Monitoring Index)
 - SAVI (Soil-Adjusted Vegetation Index)

- The classification process combines different bands in the Landsat satellite images in order to correctly make the classification
GreenLand general description

- Classification output (right image) based on input satellite image (left image)
GreenLand related architecture

OpenWater symposium and workshops, UNESCO-IHE, Delft, The Netherlands, 18-19 April, 2011
GreenLand related architecture

- Based on client-server architecture
- Relies on ESIP and gProcess platform

Client side
- GUI modules of the application
- Modules are built using the Adobe Flex technology
- GreenLand built in as a web application

Server side contains
- Java web services and methods that links the GreenLand application and the Grid infrastructure
- Java web services and methods that process the user requests and send it a proper response
GreenLand experiments outputs

![Graphs showing execution time vs. number of images for SAVI, NDVI, EVI, and IPVI metrics.](image)
GreenLand vegetation indices

- **NDVI**
 - The formula used in the NDVI classification process is the following:
 \[
 \text{NDVI} = \frac{\text{NIR} - \text{Red}}{\text{NIR} + \text{Red}}
 \]
 - NIR and Red represent two of the bandwidths of the Landsat satellite image.
 - This vegetation index is useful in classify the land cover.
 - Possible values for the NDVI are in \([-1, 1]\).
 - NDVI -> 0 for soil surfaces.
 - NDVI is in \((0, 1)\) for vegetation area.
 - Uncertainty in case of water detection.
GreenLand vegetation indices

- **EVI**
 - Closely related with the NDVI
 - Corrects some distortions in the reflected light caused by the particles in the air or in the ground cover below the vegetation
GreenLand vegetation indices

- SAVI
 - One of the best classifiers
 - Accurate differentiation from vegetation and non-vegetation areas
 - Based on the following formula

\[
SAVI = \frac{NIR - Red}{NIR + Red + 0.16}
\]
GreenLand vegetation indices

- **GEMI**
 - Minimize the atmospheric influence in the classification process
 - Sensitive to the soil noise
 - Uses the following formula

\[
GEMI = \eta \times (1 - 0.25 \times \eta) - \frac{Red - 0.125}{1 - Red}
\]

where,

\[
\eta = \frac{2 \times (NIR - Red) + 1.5 \times NIR + 0.5 \times Red}{NIR + Red + 0.5}
\]
GreenLand vegetation indices

- GEMI
 described as PDG

\[
\text{SG} \cdot (-0.25) + 1 \cdot \text{SG} \cdot \text{Red} - 0.12 \cdot \text{Red} \times (-1) + 1 \rightarrow \text{GEMI}
\]
GreenLand GUI description

1. Input and output dataset

<table>
<thead>
<tr>
<th>Check all</th>
<th>Image name</th>
<th>Options</th>
<th>NDVI</th>
<th>EVI</th>
<th>IPVI</th>
<th>SAVI</th>
<th>GEMI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>romania1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>romania2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>romania3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>romania4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>romania5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>romania6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
GreenLand GUI description

1. Input and output dataset

- This example uses three input Landsat satellite images (romania1, romania3, romania5)

- For the first image NDVI, EVI, IPVI and GEMI vegetation indexes are used in the classification process
GreenLand GUI description

2. Naming the process

- Before launching the process to execution over the Grid infrastructure the user should name it.

- The **Start processing** button is enabled only if the Process name and the Process description fields are filled in correctly by the user.
GreenLand GUI description

3. Monitor the execution

- Uses the GreenLand monitoring module
- The process execution status is visible for the user in the GreenLand GUI
- Performs periodically updates at GUI level
- Information are displayed using the EditorWS and the ViewerIC modules of the gProcess platform
GreenLand GUI description

3. Monitor the execution

- This module contains a process search and a filter mechanism
- Different search criteria: name, description, status or date
- Different filters: display all the active, completed or cancelled processes
GreenLand GUI description

- Processes are displayed to the user in the **Process status information** table.
- Each table input has a specific color, depending on the process execution status.

<table>
<thead>
<tr>
<th>description</th>
<th>Node name</th>
<th>Start server time</th>
<th>End server time</th>
<th>Status</th>
<th>Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>11_15_Div</td>
<td></td>
<td>2011-03-28 10:00:59</td>
<td></td>
<td>SUBMITTED</td>
<td></td>
</tr>
<tr>
<td>11_14_MultFloat</td>
<td></td>
<td>2011-03-28 10:00:59</td>
<td></td>
<td>SUBMITTED</td>
<td></td>
</tr>
<tr>
<td>11_12_Add</td>
<td></td>
<td>2011-03-28 10:00:59</td>
<td></td>
<td>SUBMITTED</td>
<td></td>
</tr>
<tr>
<td>11_11_AddFloat</td>
<td></td>
<td>2011-03-28 10:01:00</td>
<td></td>
<td>SUBMITTED</td>
<td></td>
</tr>
<tr>
<td>11_9_Add</td>
<td></td>
<td>2011-03-28 10:01:00</td>
<td></td>
<td>SUBMITTED</td>
<td></td>
</tr>
<tr>
<td>11_8_MultFloat</td>
<td></td>
<td>2011-03-28 10:01:00</td>
<td></td>
<td>RUNNING</td>
<td></td>
</tr>
<tr>
<td>11_5_MultFloat</td>
<td></td>
<td>2011-03-28 10:01:00</td>
<td>2011-03-28 10:01:25</td>
<td>DONE</td>
<td></td>
</tr>
<tr>
<td>11_3_Sub</td>
<td></td>
<td>2011-03-28 10:01:00</td>
<td>2011-03-28 10:01:21</td>
<td>DONE</td>
<td></td>
</tr>
<tr>
<td>NDVI: Final result</td>
<td>3_5_Div</td>
<td>2011-03-28 10:01:00</td>
<td>2011-03-28 10:01:21</td>
<td>SUBMITTED</td>
<td></td>
</tr>
<tr>
<td>NDVI: (NIR + Red)</td>
<td>3_4_Add</td>
<td>2011-03-28 10:01:01</td>
<td></td>
<td>RUNNING</td>
<td></td>
</tr>
<tr>
<td>NDVI: (NIR - Red)</td>
<td>3_3_Sub</td>
<td>2011-03-28 10:01:01</td>
<td>2011-03-28 10:01:27</td>
<td>DONE</td>
<td></td>
</tr>
</tbody>
</table>
Conclusions

- This presentation highlights the main features of the GreenLand application and the land cover classification mechanisms.

- For now the GreenLand application works only with Landsat satellite images, but we intend to improve its functionality by adding the MODIS, Meris, ASTER or other satellite images type.

- The new human computer interactions are also the main features in extending the GreenLand application:
 - Overlay the output results on an interactive map
 - Simulate the evolution of natural phenomena
 - Allow the user to specify its own color legend that will be used to generate the output result

- Include and gridify the GRASS software package by ESIP to extend the standard interoperability.
GreenLand sample

- SAVI described as PDG

\[
SAVI = \frac{NIR - Red}{NIR + Red + 0.16}
\]
Thanks, Questions

Dorian Gorgan
Computer Science Department
Technical University of Cluj-Napoca
dorian.gorgan@cs.utcluj.ro