

Satellite image processing based on GreenLand application

Dorian Gorgan, Danut Mihon, Victor Bacu
Computer Science Department
Technical University of Cluj-Napoca
dorian.gorgan@cs.utcluj.ro

Presentation topics

□ ICT topics:

- Satellite image processing overview
- Satellite image processing applications
- GreenLand general description
- System related architecture
- Vegetation indexes
- GreenLand GUI description
- GreenLand user scenario
- Conclusions

Satellite image processing overview

- □ Satellite image processing
 - Definition: act of examining images for the purpose of identifying objects and giving them a significance
 - Applicability: used in different Earth Science domains
 - Land cover
 - □ Air pollution
 - □ Hydrology
 - □ Ecology
 - □ etc
 - Analysis: detecting, identifying, classifying, measuring and evaluating the significance of physical and cultural objects, their patterns and spatial relationship

Satellite image processing overview

- □ Satellite image processing
 - Types: many types of satellite images used for different purposes
 - □ Landsat
 - □ MODIS
 - □ Aster
 - □ Quickbird, etc
 - Access: there are several places from where to view and download these satellite images.
 - Size: depending on the geographical region size and on the containing information, satellite images could reach a couple of Gb in size

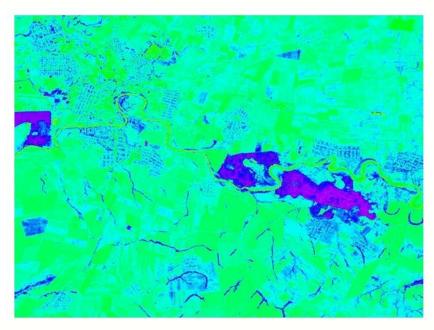
Satellite image processing applications

- □ GreenLand application
 - Vegetation index based classification (NDVI, EVI, IPVI, SAVI, GEMI)
 - Works with pre processed Landsat satellite images
 - Runs on GRID infrastructure

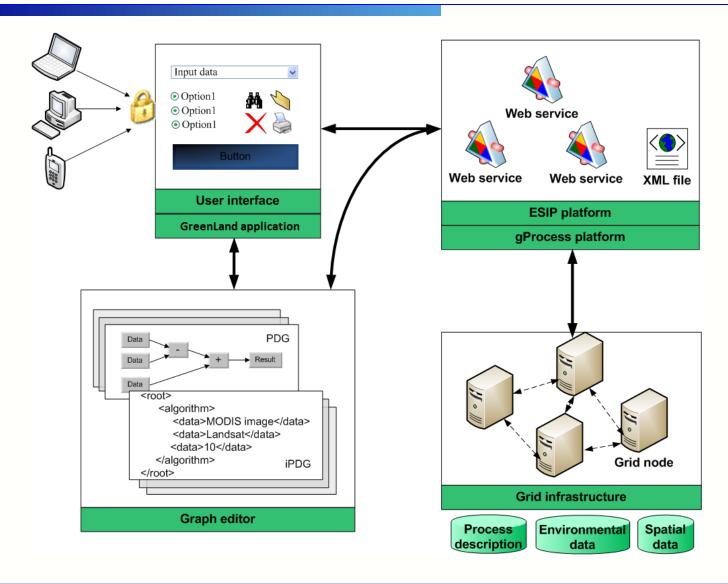
Jobs are fast executed due to high computation and storage capabilities offered by the Grid infrastructure

- Based on ESIP (Environment Oriented Satellite Image Processing Platform)
- Quick and easy access

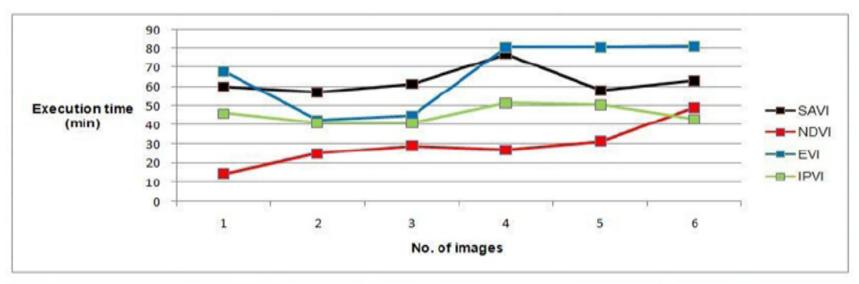
http://cgis.utcluj.ro:4331/GreenLand1.3/

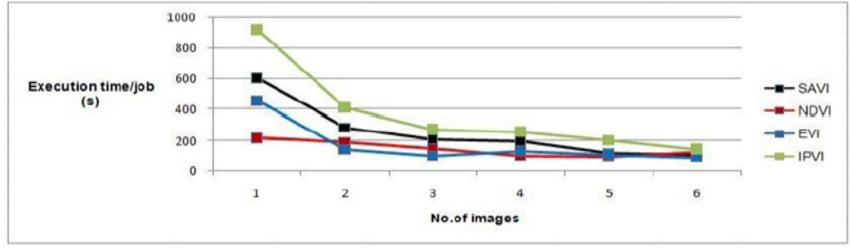

- □ The GreenLand classification process is performed based on vegetation indexes
 - NDVI (Normalized Vegetation Index)
 - EVI (Enhanced Vegetation Index)
 - IPVI (Infrared Percentage Vegetation Index)
 - GEMI (Global Environment Monitoring Index)
 - SAVI (Soil-Adjusted Vegetation Index)
- ☐ The classification process combines different bands in the Landsat satellite images in order to correctly make the classification

GreenLand general description


 Classification output (right image) based on input satellite image (left image)

GreenLand related architecture


GreenLand related architecture



- □ Based on client-server architecture
- □ Relies on ESIP and gProcess platform
- □ Client side
 - GUI modules of the application
 - Modules are built using the Adobe Flex technology
 - GreenLand built in as a web application
- □ Server side contains
 - Java web services and methods that links the GreenLand application and the Grid infrastructure
 - Java web services and methods that process the user requests and send it a proper response

GreenLand experiments outputs

□ NDVI

The formula used in the NDVI classification process is the following

$$NDVI = \frac{NIR - Red}{NIR + Red}$$

- NIR and Red represent two of the bandwidths of the Landsat satellite image
- This vegetation index is useful in classify the land cover
- Possible values for the NDVI are in [-1, 1]
- NDVI -> 0 for soil surfaces
- NDVI is in (0, 1) for vegetation area
- Uncertainty in case of water detection

- - Closely related with the NDVI
 - Corrects some distortions in the reflected light caused by the particles in the air or in the ground cover bellow the vegetation

- □ SAVI
 - One of the best classifiers
 - Accurate differentiation from vegetation and non-vegetation areas
 - Based on the following formula

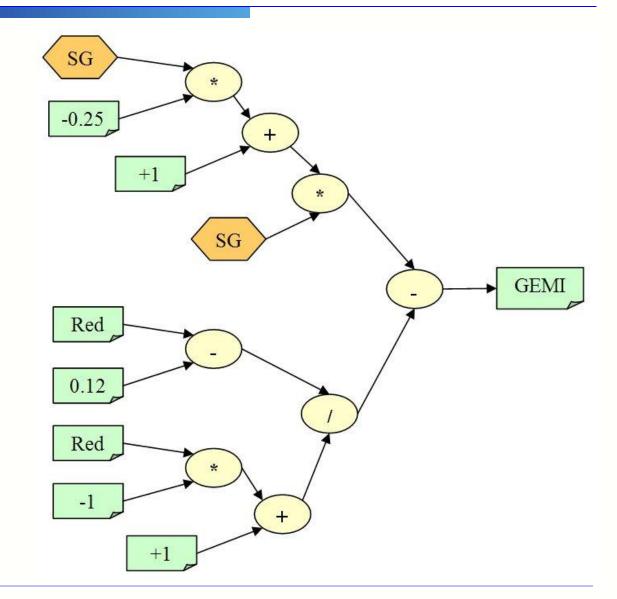
$$SAVI = \frac{NIR - Red}{NIR + Red + 0.16}$$

□ GEMI

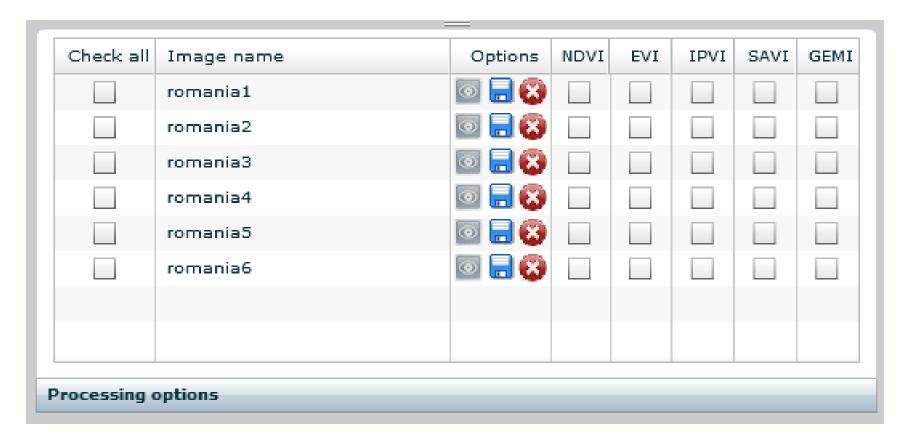
- Minimize the atmospheric influence in the classification process
- Sensitive to the soil noise
- Uses the following formula

$$GEMI = \eta * (1 - 0.25 * \eta) - \frac{Red - 0.125}{1 - Red}$$

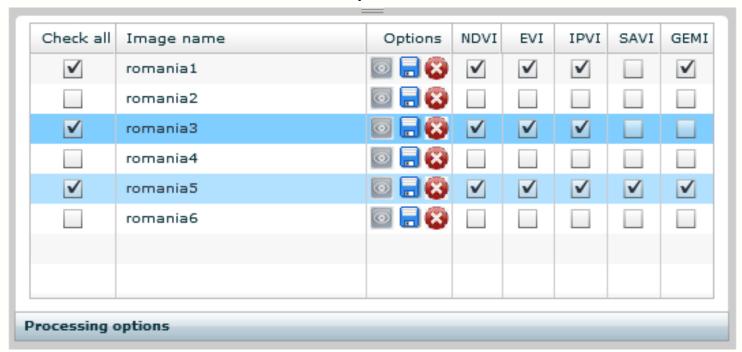
where,


$$\eta = \frac{2*(NIR-Red)+1.5*NIR+0.5*Red}{NIR+Red+0.5}$$

□ GEMI

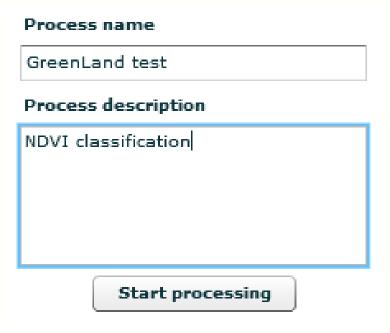

described

as PDG



1. Input and output dataset

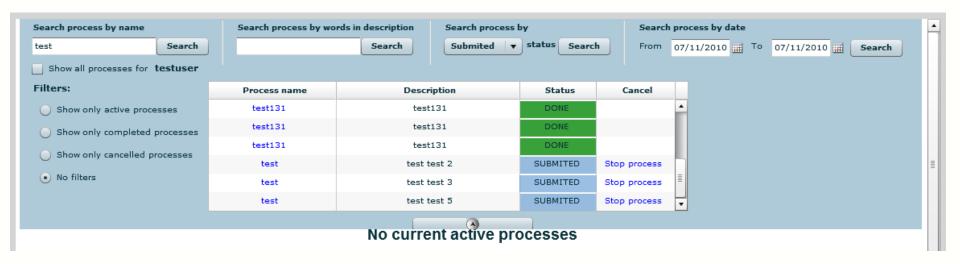
- 1. Input and output dataset
 - This example uses three input Landsat satellite images (romania1, romania3, romania5)
 - For the first image NDVI, EVI, IPVI and GEMI vegetation indexes are used in the classification process



2. Naming the process

- Before launching the process to execution over the Grid infrastructure the user should name it
- The Start processing button is enable only if the Process name and the Process description fields are filled in correctly by the user

- 3. Monitor the execution
 - Uses the GreenLand monitoring module
 - The process execution status is visible for the user in the GreenLand GUI
 - Performs periodically updates at GUI level
 - Information are displayed using the EditorWS and the ViewerIC modules of the gProcess platform



3. Monitor the execution

- This module contains a process search and a filter mechanism
- Different search criteria: name, description, status or date
- Different filters: display all the active, completed or cancelled processes

- Processes are displayed to the user in the Process status information table
- □ Each table input has a specific color, depending on the process execution status

Current process status information					
description	Node name	Start server time	End server time	Status	Options
	11_15_Div	2011-03-28 10:00:59		SUBMITED	
	11_14_MultFloat	2011-03-28 10:00:59		SUBMITED	
	11_12_Add	2011-03-28 10:00:59		SUBMITED	
	11_11_AddFloat	2011-03-28 10:01:00		SUBMITED	
	11_9_Add	2011-03-28 10:01:00		SUBMITED	
	11_8_MultFloat	2011-03-28 10:01:00		RUNNING	
	11_5_MultFloat	2011-03-28 10:01:00	2011-03-28 10:01:25	DONE	
	11_3_Sub	2011-03-28 10:01:00	2011-03-28 10:01:21	DONE	
NDVI: Final result	3_5_Div	2011-03-28 10:01:00		SUBMITED	
NDVI: (NIR + Red)	3_4_Add	2011-03-28 10:01:01		RUNNING	
NDVI: (NIR - Red)	3_3_Sub	2011-03-28 10:01:01	2011-03-28 10:01:27	DONE	

Conclusions

- This presentation highlights the main features of the GreenLand application and the land cover classification mechanisms
- □ For now the GreenLand application works only with Landsat satellite images, but we intend to improve its functionality by adding the MODIS, Meris, ASTER or other satellite images type
- □ The new human computer interactions are also the main features in extending the GreenLand application
 - Overly the output results on an interactive map
 - Simulate the evolution of natural phenomena
 - Allow the user to specify its own color legend that will be used to generate the output result
- Include and gridify the GRASS software package by ESIP to extend the standard interoperability

GreenLand sample

□ SAVI described as PDG

Thanks, Questions

Dorian Gorgan
Computer Science Department
Technical University of Cluj-Napoca
dorian.gorgan@cs.utcluj.ro

